Summary: | Jun Gao,1,2 Kang Zeng,1 Yi Liu,3 Lin Gao,4 Lishi Liu1 1Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China; 2Department of Dermatology, Liuzhou Worker’s Hospital, Liuzhou, China; 3Department of Hand and Foot Surgery, Liuzhou Worker’s Hospital, Liuzhou, China; 4Department of Clinical Medical Research Center, The 2nd Clinical Medicine College (Shenzhen People’s Hospital) of Jinan University, Shenzhen, China Introduction: Melanoma has been reported as the most common malignancy in skin cancer. The small nucleolar RNA host gene 5 (SNHG5), an lncRNA, has been proven as a vital regulator in several types of carcinoma. This study was designed to investigate the detailed roles and possible mechanisms of SNHG5 in melanoma progression. Methods: Quantitative real-time PCR (qRT-PCR) analysis was conducted to detect the expression levels of SNHG5, miR-26a-5p and transient receptor potential, canonical 3 (TRPC3) mRNA in melanoma tissues and cells. CCK-8 assay was used to measure the cell viability. Flow cytometry assays were performed to determine the cell cycle distribution and apoptosis. The invasive ability was assessed by a 24-well Transwell insert. Western blot analysis was employed to evaluate the protein expression of TRPC3. Dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay were applied to identify the interactions among SNHG5, miR-26a-5p and TRPC3.Results: The results showed that SNHG5 expression was increased in melanoma tumor tissues and cell lines. Higher SNHG5 expression was correlated with advanced pathogenic status. Moreover, SNHG5 could serve as a molecular sponge of miR-26a-5p. SNHG5 downregulation repressed proliferation, promoted apoptosis, and decreased invasion in melanoma cells, while these effects were greatly counteracted by miR-26a-5p inhibitor. Furthermore, miR-26a-5p directly targeted TRPC3 to suppress its expression, and this effect was aggravated following SNHG5 downregulation. Also, TRPC3 depletion exerted similar tumor-suppressive functions as SNHG5 knockdown. Conclusion: SNHG5 promoted melanoma development by inhibiting miR-26a-5p and facilitating TRPC3 expression, highlighting the potential of SNHG5 as a novel target therapy for melanoma. Keywords: lncRNA, SNHG5, miR-26a-5p, TRPC3, cutaneum carcinoma
|