A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results
The mortality associated to breast cancer is in many cases related to metastasization and recurrence. Personalized treatment strategies are critical for the outcomes improvement of BC patients and the Clinical Decision Support Systems can have an important role in medical practice. In this paper, we...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-03-01
|
Series: | Frontiers in Oncology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fonc.2021.576007/full |
id |
doaj-765b017212f0470285d2743268f0470f |
---|---|
record_format |
Article |
spelling |
doaj-765b017212f0470285d2743268f0470f2021-03-11T06:11:18ZengFrontiers Media S.A.Frontiers in Oncology2234-943X2021-03-011110.3389/fonc.2021.576007576007A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary ResultsRaffaella Massafra0Agnese Latorre1Annarita Fanizzi2Roberto Bellotti3Vittorio Didonna4Francesco Giotta5Daniele La Forgia6Annalisa Nardone7Maria Pastena8Cosmo Maurizio Ressa9Lucia Rinaldi10Anna Orsola Maria Russo11Pasquale Tamborra12Sabina Tangaro13Alfredo Zito14Vito Lorusso15Struttura Semplice Dipartimentale di Fisica Sanitaria, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyUnitá Opertiva Complessa di Oncologia Medica, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyStruttura Semplice Dipartimentale di Fisica Sanitaria, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyDipartimento di Fisica, Universitá degli Studi “Aldo Moro” e Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Bari, ItalyStruttura Semplice Dipartimentale di Fisica Sanitaria, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyUnitá Opertiva Complessa di Oncologia Medica, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyStruttura Semplice Dipartimentale di Radiologia Senologica, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyUnitá Opertiva Complessa di Radioterapia, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyUnitá Opertiva Complessa di Anatomia Patologica, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyUnitá Opertiva Complessa di Chirurgia Plastica e Ricostruttiva, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyStruttura Semplice Dipartimentale di Oncologia Per la Presa in Carico Globale del Paziente, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyDipartimento di Oncologia Medica, Universitá degli Studi di Napoli, Napoli, ItalyStruttura Semplice Dipartimentale di Fisica Sanitaria, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy0Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Universitá degli Studi “Aldo Moro” e Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Bari, ItalyUnitá Opertiva Complessa di Anatomia Patologica, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyUnitá Opertiva Complessa di Oncologia Medica, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyThe mortality associated to breast cancer is in many cases related to metastasization and recurrence. Personalized treatment strategies are critical for the outcomes improvement of BC patients and the Clinical Decision Support Systems can have an important role in medical practice. In this paper, we present the preliminary results of a prediction model of the Breast Cancer Recurrence (BCR) within five and ten years after diagnosis. The main breast cancer-related and treatment-related features of 256 patients referred to Istituto Tumori “Giovanni Paolo II” of Bari (Italy) were used to train machine learning algorithms at the-state-of-the-art. Firstly, we implemented several feature importance techniques and then we evaluated the prediction performances of BCR within 5 and 10 years after the first diagnosis by means different classifiers. By using a small number of features, the models reached highly performing results both with reference to the BCR within 5 years and within 10 years with an accuracy of 77.50% and 80.39% and a sensitivity of 92.31% and 95.83% respectively, in the hold-out sample test. Despite validation studies are needed on larger samples, our results are promising for the development of a reliable prognostic supporting tool for clinicians in the definition of personalized treatment plans.https://www.frontiersin.org/articles/10.3389/fonc.2021.576007/fullinvasive breast cancercancer recurrencelate recurrencefeature importancemachine learningprognosis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Raffaella Massafra Agnese Latorre Annarita Fanizzi Roberto Bellotti Vittorio Didonna Francesco Giotta Daniele La Forgia Annalisa Nardone Maria Pastena Cosmo Maurizio Ressa Lucia Rinaldi Anna Orsola Maria Russo Pasquale Tamborra Sabina Tangaro Alfredo Zito Vito Lorusso |
spellingShingle |
Raffaella Massafra Agnese Latorre Annarita Fanizzi Roberto Bellotti Vittorio Didonna Francesco Giotta Daniele La Forgia Annalisa Nardone Maria Pastena Cosmo Maurizio Ressa Lucia Rinaldi Anna Orsola Maria Russo Pasquale Tamborra Sabina Tangaro Alfredo Zito Vito Lorusso A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results Frontiers in Oncology invasive breast cancer cancer recurrence late recurrence feature importance machine learning prognosis |
author_facet |
Raffaella Massafra Agnese Latorre Annarita Fanizzi Roberto Bellotti Vittorio Didonna Francesco Giotta Daniele La Forgia Annalisa Nardone Maria Pastena Cosmo Maurizio Ressa Lucia Rinaldi Anna Orsola Maria Russo Pasquale Tamborra Sabina Tangaro Alfredo Zito Vito Lorusso |
author_sort |
Raffaella Massafra |
title |
A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results |
title_short |
A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results |
title_full |
A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results |
title_fullStr |
A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results |
title_full_unstemmed |
A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results |
title_sort |
clinical decision support system for predicting invasive breast cancer recurrence: preliminary results |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Oncology |
issn |
2234-943X |
publishDate |
2021-03-01 |
description |
The mortality associated to breast cancer is in many cases related to metastasization and recurrence. Personalized treatment strategies are critical for the outcomes improvement of BC patients and the Clinical Decision Support Systems can have an important role in medical practice. In this paper, we present the preliminary results of a prediction model of the Breast Cancer Recurrence (BCR) within five and ten years after diagnosis. The main breast cancer-related and treatment-related features of 256 patients referred to Istituto Tumori “Giovanni Paolo II” of Bari (Italy) were used to train machine learning algorithms at the-state-of-the-art. Firstly, we implemented several feature importance techniques and then we evaluated the prediction performances of BCR within 5 and 10 years after the first diagnosis by means different classifiers. By using a small number of features, the models reached highly performing results both with reference to the BCR within 5 years and within 10 years with an accuracy of 77.50% and 80.39% and a sensitivity of 92.31% and 95.83% respectively, in the hold-out sample test. Despite validation studies are needed on larger samples, our results are promising for the development of a reliable prognostic supporting tool for clinicians in the definition of personalized treatment plans. |
topic |
invasive breast cancer cancer recurrence late recurrence feature importance machine learning prognosis |
url |
https://www.frontiersin.org/articles/10.3389/fonc.2021.576007/full |
work_keys_str_mv |
AT raffaellamassafra aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT agneselatorre aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT annaritafanizzi aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT robertobellotti aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT vittoriodidonna aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT francescogiotta aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT danielelaforgia aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT annalisanardone aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT mariapastena aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT cosmomaurizioressa aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT luciarinaldi aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT annaorsolamariarusso aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT pasqualetamborra aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT sabinatangaro aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT alfredozito aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT vitolorusso aclinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT raffaellamassafra clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT agneselatorre clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT annaritafanizzi clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT robertobellotti clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT vittoriodidonna clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT francescogiotta clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT danielelaforgia clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT annalisanardone clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT mariapastena clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT cosmomaurizioressa clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT luciarinaldi clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT annaorsolamariarusso clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT pasqualetamborra clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT sabinatangaro clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT alfredozito clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults AT vitolorusso clinicaldecisionsupportsystemforpredictinginvasivebreastcancerrecurrencepreliminaryresults |
_version_ |
1724225926169886720 |