On the Recovery and Fatigue Life Extension of Stainless Steel 316 Metals by Means of Recovery Heat Treatment
In this paper, we propose a methodology for enhancing the fatigue life of SS316 by performing intermittent recovery heat-treatment (RHT) in the Argon environment at different temperatures. To this end, fully-reversed fatigue bending tests are conducted on the heat-treated SS316 specimens. Damping va...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/10/10/1290 |
Summary: | In this paper, we propose a methodology for enhancing the fatigue life of SS316 by performing intermittent recovery heat-treatment (RHT) in the Argon environment at different temperatures. To this end, fully-reversed fatigue bending tests are conducted on the heat-treated SS316 specimens. Damping values are obtained using the impact excitation technique to assess the damage remaining in the material after each RHT and the corresponding fatigue life. Damping is also used to distinguish the three stages of the fatigue phenomenon and the onset of crack initiation. The results show that by performing intermittent RHTs, the density of dislocation is decreased substantially and fatigue life is improved. Examination of the damping results also reveals that the material becomes more brittle after the RHT due to the decrease in the density of dislocations. The fatigue life of the specimens is governed by these two phenomena. |
---|---|
ISSN: | 2075-4701 |