Simultaneous Generation of Arbitrary Assembly of Polarization States with Geometrical-Scaling-Induced Phase Modulation
Manipulating the polarization of light on the microscale or nanoscale is essential for integrated photonics and quantum optical devices. Nowadays, the metasurface allows one to build on-chip devices that efficiently manipulate the polarization states. However, it remains challenging to generate diff...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2020-08-01
|
Series: | Physical Review X |
Online Access: | http://doi.org/10.1103/PhysRevX.10.031035 |
id |
doaj-762e8be43d5d4ce7bd6e642ef5de28e1 |
---|---|
record_format |
Article |
spelling |
doaj-762e8be43d5d4ce7bd6e642ef5de28e12021-02-12T15:27:14ZengAmerican Physical SocietyPhysical Review X2160-33082020-08-0110303103510.1103/PhysRevX.10.031035Simultaneous Generation of Arbitrary Assembly of Polarization States with Geometrical-Scaling-Induced Phase ModulationYa-Jun GaoXiang XiongZhenghan WangFei ChenRu-Wen PengMu WangManipulating the polarization of light on the microscale or nanoscale is essential for integrated photonics and quantum optical devices. Nowadays, the metasurface allows one to build on-chip devices that efficiently manipulate the polarization states. However, it remains challenging to generate different types of polarization states simultaneously, which is required to encode information for quantum computing and quantum cryptography applications. By introducing geometrical-scaling-induced (GSI) phase modulations, we demonstrate that an assembly of circularly polarized (CP) and linearly polarized (LP) states can be simultaneously generated by a single metasurface made of L-shaped resonators with different geometrical features. Upon illumination, each resonator diffracts the CP state with a certain GSI phase. The interaction of these diffractions leads to the desired output beams, where the polarization state and the propagation direction can be accurately tuned by selecting the geometrical shape, size, and spatial sequence of each resonator in the unit cell. As an example of potential applications, we show that an image can be encoded with different polarization profiles at different diffraction orders and decoded with a polarization analyzer. This approach resolves a challenging problem in integrated optics and is inspiring for on-chip quantum information processing.http://doi.org/10.1103/PhysRevX.10.031035 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ya-Jun Gao Xiang Xiong Zhenghan Wang Fei Chen Ru-Wen Peng Mu Wang |
spellingShingle |
Ya-Jun Gao Xiang Xiong Zhenghan Wang Fei Chen Ru-Wen Peng Mu Wang Simultaneous Generation of Arbitrary Assembly of Polarization States with Geometrical-Scaling-Induced Phase Modulation Physical Review X |
author_facet |
Ya-Jun Gao Xiang Xiong Zhenghan Wang Fei Chen Ru-Wen Peng Mu Wang |
author_sort |
Ya-Jun Gao |
title |
Simultaneous Generation of Arbitrary Assembly of Polarization States with Geometrical-Scaling-Induced Phase Modulation |
title_short |
Simultaneous Generation of Arbitrary Assembly of Polarization States with Geometrical-Scaling-Induced Phase Modulation |
title_full |
Simultaneous Generation of Arbitrary Assembly of Polarization States with Geometrical-Scaling-Induced Phase Modulation |
title_fullStr |
Simultaneous Generation of Arbitrary Assembly of Polarization States with Geometrical-Scaling-Induced Phase Modulation |
title_full_unstemmed |
Simultaneous Generation of Arbitrary Assembly of Polarization States with Geometrical-Scaling-Induced Phase Modulation |
title_sort |
simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation |
publisher |
American Physical Society |
series |
Physical Review X |
issn |
2160-3308 |
publishDate |
2020-08-01 |
description |
Manipulating the polarization of light on the microscale or nanoscale is essential for integrated photonics and quantum optical devices. Nowadays, the metasurface allows one to build on-chip devices that efficiently manipulate the polarization states. However, it remains challenging to generate different types of polarization states simultaneously, which is required to encode information for quantum computing and quantum cryptography applications. By introducing geometrical-scaling-induced (GSI) phase modulations, we demonstrate that an assembly of circularly polarized (CP) and linearly polarized (LP) states can be simultaneously generated by a single metasurface made of L-shaped resonators with different geometrical features. Upon illumination, each resonator diffracts the CP state with a certain GSI phase. The interaction of these diffractions leads to the desired output beams, where the polarization state and the propagation direction can be accurately tuned by selecting the geometrical shape, size, and spatial sequence of each resonator in the unit cell. As an example of potential applications, we show that an image can be encoded with different polarization profiles at different diffraction orders and decoded with a polarization analyzer. This approach resolves a challenging problem in integrated optics and is inspiring for on-chip quantum information processing. |
url |
http://doi.org/10.1103/PhysRevX.10.031035 |
work_keys_str_mv |
AT yajungao simultaneousgenerationofarbitraryassemblyofpolarizationstateswithgeometricalscalinginducedphasemodulation AT xiangxiong simultaneousgenerationofarbitraryassemblyofpolarizationstateswithgeometricalscalinginducedphasemodulation AT zhenghanwang simultaneousgenerationofarbitraryassemblyofpolarizationstateswithgeometricalscalinginducedphasemodulation AT feichen simultaneousgenerationofarbitraryassemblyofpolarizationstateswithgeometricalscalinginducedphasemodulation AT ruwenpeng simultaneousgenerationofarbitraryassemblyofpolarizationstateswithgeometricalscalinginducedphasemodulation AT muwang simultaneousgenerationofarbitraryassemblyofpolarizationstateswithgeometricalscalinginducedphasemodulation |
_version_ |
1724272936752250880 |