4D tropospheric tomography using GPS slant wet delays

Tomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS) receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processi...

Full description

Bibliographic Details
Main Authors: A. Flores, G. Ruffini, A. Rius
Format: Article
Language:English
Published: Copernicus Publications 2000-02-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/18/223/2000/angeo-18-223-2000.pdf
id doaj-7625ef28802f4f6f9f6d77666818e52a
record_format Article
spelling doaj-7625ef28802f4f6f9f6d77666818e52a2020-11-25T00:21:57ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762000-02-011822323410.1007/s00585-000-0223-74D tropospheric tomography using GPS slant wet delaysA. Flores0A. Flores1A. Flores2G. Ruffini3G. Ruffini4G. Ruffini5A. Rius6A. Rius7A. Rius8E-mail: flores@ieec.fcr.esInstitut d'Estudis Espacials de Catalunya (IEEC), CSIC Research Unit Edif. Nexus-204, Gran Capità 2-4, 08034 Barcelona, Spain<i>Correspondence to:</i> A. FloresE-mail: flores@ieec.fcr.esInstitut d'Estudis Espacials de Catalunya (IEEC), CSIC Research Unit Edif. Nexus-204, Gran Capità 2-4, 08034 Barcelona, Spain<i>Correspondence to:</i> A. FloresE-mail: flores@ieec.fcr.esInstitut d'Estudis Espacials de Catalunya (IEEC), CSIC Research Unit Edif. Nexus-204, Gran Capità 2-4, 08034 Barcelona, Spain<i>Correspondence to:</i> A. FloresTomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS) receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processing. These slant wet delays are the observables in the tomographic processing. We then discuss the inverse problem in 4D tropospheric tomography making extensive use of simulations to test the system and define the resolution and the impact of noise. Finally, we use data from the Kilauea network in Hawaii for February 1, 1997, and a local 4×4×40 voxel grid on a region of 400 km<sup>2</sup> and 15 km in height to produce the corresponding 4D wet refractivity fields, which are then validated using forecast analysis from the European Center for Medium Range Weather Forecast (ECMWF). We conclude that tomographic techniques can be used to monitor the troposphere in time and space.<br><br><b>Key words:</b> Radio science (remote sensing; instruments and techniques)https://www.ann-geophys.net/18/223/2000/angeo-18-223-2000.pdf
collection DOAJ
language English
format Article
sources DOAJ
author A. Flores
A. Flores
A. Flores
G. Ruffini
G. Ruffini
G. Ruffini
A. Rius
A. Rius
A. Rius
spellingShingle A. Flores
A. Flores
A. Flores
G. Ruffini
G. Ruffini
G. Ruffini
A. Rius
A. Rius
A. Rius
4D tropospheric tomography using GPS slant wet delays
Annales Geophysicae
author_facet A. Flores
A. Flores
A. Flores
G. Ruffini
G. Ruffini
G. Ruffini
A. Rius
A. Rius
A. Rius
author_sort A. Flores
title 4D tropospheric tomography using GPS slant wet delays
title_short 4D tropospheric tomography using GPS slant wet delays
title_full 4D tropospheric tomography using GPS slant wet delays
title_fullStr 4D tropospheric tomography using GPS slant wet delays
title_full_unstemmed 4D tropospheric tomography using GPS slant wet delays
title_sort 4d tropospheric tomography using gps slant wet delays
publisher Copernicus Publications
series Annales Geophysicae
issn 0992-7689
1432-0576
publishDate 2000-02-01
description Tomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS) receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processing. These slant wet delays are the observables in the tomographic processing. We then discuss the inverse problem in 4D tropospheric tomography making extensive use of simulations to test the system and define the resolution and the impact of noise. Finally, we use data from the Kilauea network in Hawaii for February 1, 1997, and a local 4×4×40 voxel grid on a region of 400 km<sup>2</sup> and 15 km in height to produce the corresponding 4D wet refractivity fields, which are then validated using forecast analysis from the European Center for Medium Range Weather Forecast (ECMWF). We conclude that tomographic techniques can be used to monitor the troposphere in time and space.<br><br><b>Key words:</b> Radio science (remote sensing; instruments and techniques)
url https://www.ann-geophys.net/18/223/2000/angeo-18-223-2000.pdf
work_keys_str_mv AT aflores 4dtropospherictomographyusinggpsslantwetdelays
AT aflores 4dtropospherictomographyusinggpsslantwetdelays
AT aflores 4dtropospherictomographyusinggpsslantwetdelays
AT gruffini 4dtropospherictomographyusinggpsslantwetdelays
AT gruffini 4dtropospherictomographyusinggpsslantwetdelays
AT gruffini 4dtropospherictomographyusinggpsslantwetdelays
AT arius 4dtropospherictomographyusinggpsslantwetdelays
AT arius 4dtropospherictomographyusinggpsslantwetdelays
AT arius 4dtropospherictomographyusinggpsslantwetdelays
_version_ 1725360388563795968