4D tropospheric tomography using GPS slant wet delays
Tomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS) receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2000-02-01
|
Series: | Annales Geophysicae |
Online Access: | https://www.ann-geophys.net/18/223/2000/angeo-18-223-2000.pdf |
id |
doaj-7625ef28802f4f6f9f6d77666818e52a |
---|---|
record_format |
Article |
spelling |
doaj-7625ef28802f4f6f9f6d77666818e52a2020-11-25T00:21:57ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762000-02-011822323410.1007/s00585-000-0223-74D tropospheric tomography using GPS slant wet delaysA. Flores0A. Flores1A. Flores2G. Ruffini3G. Ruffini4G. Ruffini5A. Rius6A. Rius7A. Rius8E-mail: flores@ieec.fcr.esInstitut d'Estudis Espacials de Catalunya (IEEC), CSIC Research Unit Edif. Nexus-204, Gran Capità 2-4, 08034 Barcelona, Spain<i>Correspondence to:</i> A. FloresE-mail: flores@ieec.fcr.esInstitut d'Estudis Espacials de Catalunya (IEEC), CSIC Research Unit Edif. Nexus-204, Gran Capità 2-4, 08034 Barcelona, Spain<i>Correspondence to:</i> A. FloresE-mail: flores@ieec.fcr.esInstitut d'Estudis Espacials de Catalunya (IEEC), CSIC Research Unit Edif. Nexus-204, Gran Capità 2-4, 08034 Barcelona, Spain<i>Correspondence to:</i> A. FloresTomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS) receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processing. These slant wet delays are the observables in the tomographic processing. We then discuss the inverse problem in 4D tropospheric tomography making extensive use of simulations to test the system and define the resolution and the impact of noise. Finally, we use data from the Kilauea network in Hawaii for February 1, 1997, and a local 4×4×40 voxel grid on a region of 400 km<sup>2</sup> and 15 km in height to produce the corresponding 4D wet refractivity fields, which are then validated using forecast analysis from the European Center for Medium Range Weather Forecast (ECMWF). We conclude that tomographic techniques can be used to monitor the troposphere in time and space.<br><br><b>Key words:</b> Radio science (remote sensing; instruments and techniques)https://www.ann-geophys.net/18/223/2000/angeo-18-223-2000.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Flores A. Flores A. Flores G. Ruffini G. Ruffini G. Ruffini A. Rius A. Rius A. Rius |
spellingShingle |
A. Flores A. Flores A. Flores G. Ruffini G. Ruffini G. Ruffini A. Rius A. Rius A. Rius 4D tropospheric tomography using GPS slant wet delays Annales Geophysicae |
author_facet |
A. Flores A. Flores A. Flores G. Ruffini G. Ruffini G. Ruffini A. Rius A. Rius A. Rius |
author_sort |
A. Flores |
title |
4D tropospheric tomography using GPS slant wet delays |
title_short |
4D tropospheric tomography using GPS slant wet delays |
title_full |
4D tropospheric tomography using GPS slant wet delays |
title_fullStr |
4D tropospheric tomography using GPS slant wet delays |
title_full_unstemmed |
4D tropospheric tomography using GPS slant wet delays |
title_sort |
4d tropospheric tomography using gps slant wet delays |
publisher |
Copernicus Publications |
series |
Annales Geophysicae |
issn |
0992-7689 1432-0576 |
publishDate |
2000-02-01 |
description |
Tomographic techniques are successfully
applied to obtain 4D images of the tropospheric refractivity in a local dense
network of global positioning system (GPS) receivers. We show here how GPS data
are processed to obtain the tropospheric slant wet delays and discuss the
validity of the processing. These slant wet delays are the observables in the
tomographic processing. We then discuss the inverse problem in 4D tropospheric
tomography making extensive use of simulations to test the system and define the
resolution and the impact of noise. Finally, we use data from the Kilauea
network in Hawaii for February 1, 1997, and a local 4×4×40 voxel grid on a
region of 400 km<sup>2</sup> and 15 km in height to produce the corresponding 4D
wet refractivity fields, which are then validated using forecast analysis from
the European Center for Medium Range Weather Forecast (ECMWF). We conclude that
tomographic techniques can be used to monitor the troposphere in time and space.<br><br><b>Key words:</b> Radio science (remote sensing; instruments
and techniques) |
url |
https://www.ann-geophys.net/18/223/2000/angeo-18-223-2000.pdf |
work_keys_str_mv |
AT aflores 4dtropospherictomographyusinggpsslantwetdelays AT aflores 4dtropospherictomographyusinggpsslantwetdelays AT aflores 4dtropospherictomographyusinggpsslantwetdelays AT gruffini 4dtropospherictomographyusinggpsslantwetdelays AT gruffini 4dtropospherictomographyusinggpsslantwetdelays AT gruffini 4dtropospherictomographyusinggpsslantwetdelays AT arius 4dtropospherictomographyusinggpsslantwetdelays AT arius 4dtropospherictomographyusinggpsslantwetdelays AT arius 4dtropospherictomographyusinggpsslantwetdelays |
_version_ |
1725360388563795968 |