No-free-information principle in general probabilistic theories

In quantum theory, the no-information-without-disturbance and no-free-information theorems express that those observables that do not disturb the measurement of another observable and those that can be measured jointly with any other observable must be trivial, i.e., coin tossing observables. We sho...

Full description

Bibliographic Details
Main Authors: Teiko Heinosaari, Leevi Leppäjärvi, Martin Plávala
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2019-07-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2019-07-08-157/pdf/
Description
Summary:In quantum theory, the no-information-without-disturbance and no-free-information theorems express that those observables that do not disturb the measurement of another observable and those that can be measured jointly with any other observable must be trivial, i.e., coin tossing observables. We show that in the framework of general probabilistic theories these statements do not hold in general and continue to completely specify these two classes of observables. In this way, we obtain characterizations of the probabilistic theories where these statements hold. As a particular class of state spaces we consider the polygon state spaces, in which we demonstrate our results and show that while the no-information-without-disturbance principle always holds, the validity of the no-free-information principle depends on the parity of the number of vertices of the polygons.
ISSN:2521-327X