Microstructures and physical properties of waste garnets as a promising construction materials

Rapid industrial growth has witnessed the ever-increasing utilization of sand from rivers for various construction purposes, which caused an over-exploitation of rivers’ beds and disturbed the eco-system. strong engineering properties of waste garnets offer a recycling alternative to create efficien...

Full description

Bibliographic Details
Main Authors: Habeeb Lateef Muttashar, Nazri Bin Ali, Mohd Azreen Mohd Ariffin, Mohd Warid Hussin
Format: Article
Language:English
Published: Elsevier 2018-06-01
Series:Case Studies in Construction Materials
Online Access:http://www.sciencedirect.com/science/article/pii/S2214509517301754
Description
Summary:Rapid industrial growth has witnessed the ever-increasing utilization of sand from rivers for various construction purposes, which caused an over-exploitation of rivers’ beds and disturbed the eco-system. strong engineering properties of waste garnets offer a recycling alternative to create efficient construction materials. Recycling of garnets provides a cost-effective and environmentally responsible solution rather than dumping it as industrial waste. In this spirit, this article presents an investigation into the capacity of spent garnets as sand replacement. The main parameters studied were the evolution of leaching performance, microstructure of the raw spent garnet and sand specimens. The microstructures, boning vibrations and thermal properties of the raw materials were determined using X-ray diffraction (XRD), field emission scanning microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, and thermo gravimetric analysis (TGA). Admirable features of the results suggest that the spent garnet is proven to be suitable replacement of sand. It is established that proper exploitation of spent garnet as an alternative to sand could save the earth from depleting the natural resources which is essential for sustainable development. Keywords: Spent garnet, Sand, Micro-structures, Recycling, Concrete
ISSN:2214-5095