Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922.
Rice blast is one of the most destructive diseases affecting rice worldwide. The adoption of host resistance has proven to be the most economical and effective approach to control rice blast. In recent years, sequence-specific nucleases (SSNs) have been demonstrated to be powerful tools for the impr...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4846023?pdf=render |
id |
doaj-75bf556833ad4f6f818d4690f01bd894 |
---|---|
record_format |
Article |
spelling |
doaj-75bf556833ad4f6f818d4690f01bd8942020-11-25T02:39:59ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01114e015402710.1371/journal.pone.0154027Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922.Fujun WangChunlian WangPiqing LiuCailin LeiWei HaoYing GaoYao-Guang LiuKaijun ZhaoRice blast is one of the most destructive diseases affecting rice worldwide. The adoption of host resistance has proven to be the most economical and effective approach to control rice blast. In recent years, sequence-specific nucleases (SSNs) have been demonstrated to be powerful tools for the improvement of crops via gene-specific genome editing, and CRISPR/Cas9 is thought to be the most effective SSN. Here, we report the improvement of rice blast resistance by engineering a CRISPR/Cas9 SSN (C-ERF922) targeting the OsERF922 gene in rice. Twenty-one C-ERF922-induced mutant plants (42.0%) were identified from 50 T0 transgenic plants. Sanger sequencing revealed that these plants harbored various insertion or deletion (InDel) mutations at the target site. We showed that all of the C-ERF922-induced allele mutations were transmitted to subsequent generations. Mutant plants harboring the desired gene modification but not containing the transferred DNA were obtained by segregation in the T1 and T2 generations. Six T2 homozygous mutant lines were further examined for a blast resistance phenotype and agronomic traits, such as plant height, flag leaf length and width, number of productive panicles, panicle length, number of grains per panicle, seed setting percentage and thousand seed weight. The results revealed that the number of blast lesions formed following pathogen infection was significantly decreased in all 6 mutant lines compared with wild-type plants at both the seedling and tillering stages. Furthermore, there were no significant differences between any of the 6 T2 mutant lines and the wild-type plants with regard to the agronomic traits tested. We also simultaneously targeted multiple sites within OsERF922 by using Cas9/Multi-target-sgRNAs (C-ERF922S1S2 and C-ERF922S1S2S3) to obtain plants harboring mutations at two or three sites. Our results indicate that gene modification via CRISPR/Cas9 is a useful approach for enhancing blast resistance in rice.http://europepmc.org/articles/PMC4846023?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fujun Wang Chunlian Wang Piqing Liu Cailin Lei Wei Hao Ying Gao Yao-Guang Liu Kaijun Zhao |
spellingShingle |
Fujun Wang Chunlian Wang Piqing Liu Cailin Lei Wei Hao Ying Gao Yao-Guang Liu Kaijun Zhao Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS ONE |
author_facet |
Fujun Wang Chunlian Wang Piqing Liu Cailin Lei Wei Hao Ying Gao Yao-Guang Liu Kaijun Zhao |
author_sort |
Fujun Wang |
title |
Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. |
title_short |
Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. |
title_full |
Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. |
title_fullStr |
Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. |
title_full_unstemmed |
Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. |
title_sort |
enhanced rice blast resistance by crispr/cas9-targeted mutagenesis of the erf transcription factor gene oserf922. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
Rice blast is one of the most destructive diseases affecting rice worldwide. The adoption of host resistance has proven to be the most economical and effective approach to control rice blast. In recent years, sequence-specific nucleases (SSNs) have been demonstrated to be powerful tools for the improvement of crops via gene-specific genome editing, and CRISPR/Cas9 is thought to be the most effective SSN. Here, we report the improvement of rice blast resistance by engineering a CRISPR/Cas9 SSN (C-ERF922) targeting the OsERF922 gene in rice. Twenty-one C-ERF922-induced mutant plants (42.0%) were identified from 50 T0 transgenic plants. Sanger sequencing revealed that these plants harbored various insertion or deletion (InDel) mutations at the target site. We showed that all of the C-ERF922-induced allele mutations were transmitted to subsequent generations. Mutant plants harboring the desired gene modification but not containing the transferred DNA were obtained by segregation in the T1 and T2 generations. Six T2 homozygous mutant lines were further examined for a blast resistance phenotype and agronomic traits, such as plant height, flag leaf length and width, number of productive panicles, panicle length, number of grains per panicle, seed setting percentage and thousand seed weight. The results revealed that the number of blast lesions formed following pathogen infection was significantly decreased in all 6 mutant lines compared with wild-type plants at both the seedling and tillering stages. Furthermore, there were no significant differences between any of the 6 T2 mutant lines and the wild-type plants with regard to the agronomic traits tested. We also simultaneously targeted multiple sites within OsERF922 by using Cas9/Multi-target-sgRNAs (C-ERF922S1S2 and C-ERF922S1S2S3) to obtain plants harboring mutations at two or three sites. Our results indicate that gene modification via CRISPR/Cas9 is a useful approach for enhancing blast resistance in rice. |
url |
http://europepmc.org/articles/PMC4846023?pdf=render |
work_keys_str_mv |
AT fujunwang enhancedriceblastresistancebycrisprcas9targetedmutagenesisoftheerftranscriptionfactorgeneoserf922 AT chunlianwang enhancedriceblastresistancebycrisprcas9targetedmutagenesisoftheerftranscriptionfactorgeneoserf922 AT piqingliu enhancedriceblastresistancebycrisprcas9targetedmutagenesisoftheerftranscriptionfactorgeneoserf922 AT cailinlei enhancedriceblastresistancebycrisprcas9targetedmutagenesisoftheerftranscriptionfactorgeneoserf922 AT weihao enhancedriceblastresistancebycrisprcas9targetedmutagenesisoftheerftranscriptionfactorgeneoserf922 AT yinggao enhancedriceblastresistancebycrisprcas9targetedmutagenesisoftheerftranscriptionfactorgeneoserf922 AT yaoguangliu enhancedriceblastresistancebycrisprcas9targetedmutagenesisoftheerftranscriptionfactorgeneoserf922 AT kaijunzhao enhancedriceblastresistancebycrisprcas9targetedmutagenesisoftheerftranscriptionfactorgeneoserf922 |
_version_ |
1724783811735060480 |