Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices
Non-equilibrium systems of immiscible liquids have significant potential to advance different technologies, but control over morphology or functionality remains unexplored. Here, the authors demonstrate an all-liquid fluidic device by exploiting surfactant assemblies to produce a semi-permeable memb...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2019-03-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-019-09042-y |
Summary: | Non-equilibrium systems of immiscible liquids have significant potential to advance different technologies, but control over morphology or functionality remains unexplored. Here, the authors demonstrate an all-liquid fluidic device by exploiting surfactant assemblies to produce a semi-permeable membrane between the liquids. |
---|---|
ISSN: | 2041-1723 |