On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations

In this paper, we study the behavior of <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="(" close=")"> <mo>&#923;</mo> <mo>,</mo> <mo>&#933;</mo> <mo>,&l...

Full description

Bibliographic Details
Main Authors: Eskandar Ameer, Muhammad Nazam, Hassen Aydi, Muhammad Arshad, Nabil Mlaiki
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/5/443
id doaj-75b8ca14bc8742e7a75f36f575527412
record_format Article
spelling doaj-75b8ca14bc8742e7a75f36f5755274122020-11-24T21:30:37ZengMDPI AGMathematics2227-73902019-05-017544310.3390/math7050443math7050443On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix EquationsEskandar Ameer0Muhammad Nazam1Hassen Aydi2Muhammad Arshad3Nabil Mlaiki4Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad 44000, PakistanDepartment of Mathematics, Allama Iqbal Open University, Islamabad 44000, PakistanUniversité de Sousse, Institut Supérieur d’Informatique et des Techniques de Communication, H. Sousse 4000, TunisiaDepartment of Mathematics and Statistics, International Islamic University, H-10, Islamabad 44000, PakistanDepartment of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi ArabiaIn this paper, we study the behavior of <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="(" close=")"> <mo>&#923;</mo> <mo>,</mo> <mo>&#933;</mo> <mo>,</mo> <mo>&real;</mo> </mfenced> </semantics> </math> </inline-formula>-contraction mappings under the effect of comparison functions and an arbitrary binary relation. We establish related common fixed point theorems. We explain the significance of our main theorem through examples and an application to a solution for the following nonlinear matrix equations: <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>=</mo> <mi>D</mi> <mo>+</mo> <msubsup> <mo>&#8721;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> </mrow> <mo>&#8727;</mo> </msubsup> <mi>X</mi> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>&#8722;</mo> <msubsup> <mo>&#8721;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> </mrow> <mo>&#8727;</mo> </msubsup> <mi>X</mi> <msub> <mi>B</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>=</mo> <mi>D</mi> <mo>+</mo> <msubsup> <mo>&#8721;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> </mrow> <mo>&#8727;</mo> </msubsup> <mi>&#947;</mi> <mfenced open="(" close=")"> <mi>X</mi> </mfenced> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <i>D</i> is an Hermitian positive definite matrix, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula> are arbitrary <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&#215;</mo> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> matrices and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#947;</mi> <mo>:</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#8594;</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is an order preserving continuous map such that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#947;</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. A numerical example is also presented to illustrate the theoretical findings.https://www.mdpi.com/2227-7390/7/5/443fixed pointbinary relationΛ-contractioncomparison functionnonlinear matrix equation
collection DOAJ
language English
format Article
sources DOAJ
author Eskandar Ameer
Muhammad Nazam
Hassen Aydi
Muhammad Arshad
Nabil Mlaiki
spellingShingle Eskandar Ameer
Muhammad Nazam
Hassen Aydi
Muhammad Arshad
Nabil Mlaiki
On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations
Mathematics
fixed point
binary relation
Λ-contraction
comparison function
nonlinear matrix equation
author_facet Eskandar Ameer
Muhammad Nazam
Hassen Aydi
Muhammad Arshad
Nabil Mlaiki
author_sort Eskandar Ameer
title On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations
title_short On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations
title_full On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations
title_fullStr On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations
title_full_unstemmed On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations
title_sort on (λ,υ,ℜ)-contractions and applications to nonlinear matrix equations
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-05-01
description In this paper, we study the behavior of <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="(" close=")"> <mo>&#923;</mo> <mo>,</mo> <mo>&#933;</mo> <mo>,</mo> <mo>&real;</mo> </mfenced> </semantics> </math> </inline-formula>-contraction mappings under the effect of comparison functions and an arbitrary binary relation. We establish related common fixed point theorems. We explain the significance of our main theorem through examples and an application to a solution for the following nonlinear matrix equations: <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>=</mo> <mi>D</mi> <mo>+</mo> <msubsup> <mo>&#8721;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> </mrow> <mo>&#8727;</mo> </msubsup> <mi>X</mi> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>&#8722;</mo> <msubsup> <mo>&#8721;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> </mrow> <mo>&#8727;</mo> </msubsup> <mi>X</mi> <msub> <mi>B</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>=</mo> <mi>D</mi> <mo>+</mo> <msubsup> <mo>&#8721;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> </mrow> <mo>&#8727;</mo> </msubsup> <mi>&#947;</mi> <mfenced open="(" close=")"> <mi>X</mi> </mfenced> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <i>D</i> is an Hermitian positive definite matrix, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula> are arbitrary <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&#215;</mo> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> matrices and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#947;</mi> <mo>:</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#8594;</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is an order preserving continuous map such that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#947;</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. A numerical example is also presented to illustrate the theoretical findings.
topic fixed point
binary relation
Λ-contraction
comparison function
nonlinear matrix equation
url https://www.mdpi.com/2227-7390/7/5/443
work_keys_str_mv AT eskandarameer onlyrcontractionsandapplicationstononlinearmatrixequations
AT muhammadnazam onlyrcontractionsandapplicationstononlinearmatrixequations
AT hassenaydi onlyrcontractionsandapplicationstononlinearmatrixequations
AT muhammadarshad onlyrcontractionsandapplicationstononlinearmatrixequations
AT nabilmlaiki onlyrcontractionsandapplicationstononlinearmatrixequations
_version_ 1725962465843347456