On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations
In this paper, we study the behavior of <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="(" close=")"> <mo>Λ</mo> <mo>,</mo> <mo>Υ</mo> <mo>,&l...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-05-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/5/443 |
id |
doaj-75b8ca14bc8742e7a75f36f575527412 |
---|---|
record_format |
Article |
spelling |
doaj-75b8ca14bc8742e7a75f36f5755274122020-11-24T21:30:37ZengMDPI AGMathematics2227-73902019-05-017544310.3390/math7050443math7050443On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix EquationsEskandar Ameer0Muhammad Nazam1Hassen Aydi2Muhammad Arshad3Nabil Mlaiki4Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad 44000, PakistanDepartment of Mathematics, Allama Iqbal Open University, Islamabad 44000, PakistanUniversité de Sousse, Institut Supérieur d’Informatique et des Techniques de Communication, H. Sousse 4000, TunisiaDepartment of Mathematics and Statistics, International Islamic University, H-10, Islamabad 44000, PakistanDepartment of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi ArabiaIn this paper, we study the behavior of <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="(" close=")"> <mo>Λ</mo> <mo>,</mo> <mo>Υ</mo> <mo>,</mo> <mo>ℜ</mo> </mfenced> </semantics> </math> </inline-formula>-contraction mappings under the effect of comparison functions and an arbitrary binary relation. We establish related common fixed point theorems. We explain the significance of our main theorem through examples and an application to a solution for the following nonlinear matrix equations: <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>=</mo> <mi>D</mi> <mo>+</mo> <msubsup> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> </mrow> <mo>∗</mo> </msubsup> <mi>X</mi> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>−</mo> <msubsup> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> </mrow> <mo>∗</mo> </msubsup> <mi>X</mi> <msub> <mi>B</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>=</mo> <mi>D</mi> <mo>+</mo> <msubsup> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> </mrow> <mo>∗</mo> </msubsup> <mi>γ</mi> <mfenced open="(" close=")"> <mi>X</mi> </mfenced> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <i>D</i> is an Hermitian positive definite matrix, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula> are arbitrary <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>×</mo> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> matrices and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>γ</mi> <mo>:</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>→</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is an order preserving continuous map such that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>γ</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. A numerical example is also presented to illustrate the theoretical findings.https://www.mdpi.com/2227-7390/7/5/443fixed pointbinary relationΛ-contractioncomparison functionnonlinear matrix equation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Eskandar Ameer Muhammad Nazam Hassen Aydi Muhammad Arshad Nabil Mlaiki |
spellingShingle |
Eskandar Ameer Muhammad Nazam Hassen Aydi Muhammad Arshad Nabil Mlaiki On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations Mathematics fixed point binary relation Λ-contraction comparison function nonlinear matrix equation |
author_facet |
Eskandar Ameer Muhammad Nazam Hassen Aydi Muhammad Arshad Nabil Mlaiki |
author_sort |
Eskandar Ameer |
title |
On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations |
title_short |
On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations |
title_full |
On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations |
title_fullStr |
On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations |
title_full_unstemmed |
On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations |
title_sort |
on (λ,υ,ℜ)-contractions and applications to nonlinear matrix equations |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2019-05-01 |
description |
In this paper, we study the behavior of <inline-formula> <math display="inline"> <semantics> <mfenced separators="" open="(" close=")"> <mo>Λ</mo> <mo>,</mo> <mo>Υ</mo> <mo>,</mo> <mo>ℜ</mo> </mfenced> </semantics> </math> </inline-formula>-contraction mappings under the effect of comparison functions and an arbitrary binary relation. We establish related common fixed point theorems. We explain the significance of our main theorem through examples and an application to a solution for the following nonlinear matrix equations: <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>=</mo> <mi>D</mi> <mo>+</mo> <msubsup> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> </mrow> <mo>∗</mo> </msubsup> <mi>X</mi> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>−</mo> <msubsup> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> </mrow> <mo>∗</mo> </msubsup> <mi>X</mi> <msub> <mi>B</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mrow> <mi>X</mi> <mo>=</mo> <mi>D</mi> <mo>+</mo> <msubsup> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>A</mi> <mrow> <mi>i</mi> </mrow> <mo>∗</mo> </msubsup> <mi>γ</mi> <mfenced open="(" close=")"> <mi>X</mi> </mfenced> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <i>D</i> is an Hermitian positive definite matrix, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula> are arbitrary <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>×</mo> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> matrices and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>γ</mi> <mo>:</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>→</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is an order preserving continuous map such that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>γ</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. A numerical example is also presented to illustrate the theoretical findings. |
topic |
fixed point binary relation Λ-contraction comparison function nonlinear matrix equation |
url |
https://www.mdpi.com/2227-7390/7/5/443 |
work_keys_str_mv |
AT eskandarameer onlyrcontractionsandapplicationstononlinearmatrixequations AT muhammadnazam onlyrcontractionsandapplicationstononlinearmatrixequations AT hassenaydi onlyrcontractionsandapplicationstononlinearmatrixequations AT muhammadarshad onlyrcontractionsandapplicationstononlinearmatrixequations AT nabilmlaiki onlyrcontractionsandapplicationstononlinearmatrixequations |
_version_ |
1725962465843347456 |