Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni–Fe

Plastic deformation and alloying of nanocrystalline Ni–Fe is studied by means of atomic scale computer simulations. By using a combination of Monte-Carlo and molecular dynamics methods we find that solutes have an ordering tendency even if grain sizes are in the nanometer regime, where the phase fie...

Full description

Bibliographic Details
Main Authors: Jonathan Schäfer, Karsten Albe
Format: Article
Language:English
Published: Beilstein-Institut 2013-09-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.4.63
Description
Summary:Plastic deformation and alloying of nanocrystalline Ni–Fe is studied by means of atomic scale computer simulations. By using a combination of Monte-Carlo and molecular dynamics methods we find that solutes have an ordering tendency even if grain sizes are in the nanometer regime, where the phase field of the ordered state is widened as compared to larger grain sizes. Tensile testing of disordered structures with various elemental distributions and the simultaneous analysis of intragranular defects reveal that solid solution strengthening is absent for the studied grain sizes. The composition and relaxation state of the grain boundary control the strength of the material, which is also found for ordered structures (L12), where dislocation activity is suppressed.
ISSN:2190-4286