Efficient Implementation and Numerical Analysis of Finite Element Method for Fractional Allen-Cahn Equation
We embed the fractional Allen-Cahn equation into a Galerkin variational framework and thus develop its corresponding finite element procedure and then prove rigorously its mathematical and physical properties for the finite element solution. Combining the merits of the conjugate gradient (CG) algori...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/7969371 |
Summary: | We embed the fractional Allen-Cahn equation into a Galerkin variational framework and thus develop its corresponding finite element procedure and then prove rigorously its mathematical and physical properties for the finite element solution. Combining the merits of the conjugate gradient (CG) algorithm and the Toeplitz structure of the coefficient matrix, we design a fast CG for the linearized finite element scheme to reduce the computation cost and the storage to O(M log M ) and O(M), respectively. Numerical experiments confirm that the proposed fast CG algorithm recognizes accurately the mass and energy dissipation, the phase separation through a very clear coarse graining process, and the influences of different indices r of fractional Laplacian and different coefficients K,η on the width of the interfaces. |
---|---|
ISSN: | 1024-123X 1563-5147 |