Metric dimension of Andrásfai graphs
A set \(W\subseteq V(G)\) is called a resolving set, if for each pair of distinct vertices \(u,v\in V(G)\) there exists \(t\in W\) such that \(d(u,t)\neq d(v,t)\), where \(d(x,y)\) is the distance between vertices \(x\) and \(y\). The cardinality of a minimum resolving set for \(G\) is called the m...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2019-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | https://www.opuscula.agh.edu.pl/vol39/3/art/opuscula_math_3925.pdf |