C1-alpha convergence of minimizers of a Ginzburg-Landau functional

In this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u|^p+frac{1 over 4varepsilon^p} int_G(1-|u|^2)^2, $$ on the class $W_g={v in W^{1,p}(G,{mathbb R}^2);v|_{partial G}=g}$, where $g:partial G o S^1$ is a smooth map with Brouwer degree zero, and $p$ is g...

Full description

Bibliographic Details
Main Authors: Yutian Lei, Zhuoqun Wu
Format: Article
Language:English
Published: Texas State University 2000-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2000/14/abstr.html
id doaj-7582b57b4ab0487a985908512d69a74e
record_format Article
spelling doaj-7582b57b4ab0487a985908512d69a74e2020-11-25T00:26:01ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912000-02-01200014120C1-alpha convergence of minimizers of a Ginzburg-Landau functionalYutian LeiZhuoqun WuIn this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u|^p+frac{1 over 4varepsilon^p} int_G(1-|u|^2)^2, $$ on the class $W_g={v in W^{1,p}(G,{mathbb R}^2);v|_{partial G}=g}$, where $g:partial G o S^1$ is a smooth map with Brouwer degree zero, and $p$ is greater than 2. In particular, we show that the minimizer converges to the $p$-harmonic map in $C_{hbox{loc}}^{1,alpha}(G,{mathbb R}^2)$ as $varepsilon$ approaches zero. http://ejde.math.txstate.edu/Volumes/2000/14/abstr.htmlGinzburg-Landau functionalregularizable minimizer.
collection DOAJ
language English
format Article
sources DOAJ
author Yutian Lei
Zhuoqun Wu
spellingShingle Yutian Lei
Zhuoqun Wu
C1-alpha convergence of minimizers of a Ginzburg-Landau functional
Electronic Journal of Differential Equations
Ginzburg-Landau functional
regularizable minimizer.
author_facet Yutian Lei
Zhuoqun Wu
author_sort Yutian Lei
title C1-alpha convergence of minimizers of a Ginzburg-Landau functional
title_short C1-alpha convergence of minimizers of a Ginzburg-Landau functional
title_full C1-alpha convergence of minimizers of a Ginzburg-Landau functional
title_fullStr C1-alpha convergence of minimizers of a Ginzburg-Landau functional
title_full_unstemmed C1-alpha convergence of minimizers of a Ginzburg-Landau functional
title_sort c1-alpha convergence of minimizers of a ginzburg-landau functional
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2000-02-01
description In this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u|^p+frac{1 over 4varepsilon^p} int_G(1-|u|^2)^2, $$ on the class $W_g={v in W^{1,p}(G,{mathbb R}^2);v|_{partial G}=g}$, where $g:partial G o S^1$ is a smooth map with Brouwer degree zero, and $p$ is greater than 2. In particular, we show that the minimizer converges to the $p$-harmonic map in $C_{hbox{loc}}^{1,alpha}(G,{mathbb R}^2)$ as $varepsilon$ approaches zero.
topic Ginzburg-Landau functional
regularizable minimizer.
url http://ejde.math.txstate.edu/Volumes/2000/14/abstr.html
work_keys_str_mv AT yutianlei c1alphaconvergenceofminimizersofaginzburglandaufunctional
AT zhuoqunwu c1alphaconvergenceofminimizersofaginzburglandaufunctional
_version_ 1725346261618393088