C1-alpha convergence of minimizers of a Ginzburg-Landau functional
In this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u|^p+frac{1 over 4varepsilon^p} int_G(1-|u|^2)^2, $$ on the class $W_g={v in W^{1,p}(G,{mathbb R}^2);v|_{partial G}=g}$, where $g:partial G o S^1$ is a smooth map with Brouwer degree zero, and $p$ is g...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2000-02-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2000/14/abstr.html |
id |
doaj-7582b57b4ab0487a985908512d69a74e |
---|---|
record_format |
Article |
spelling |
doaj-7582b57b4ab0487a985908512d69a74e2020-11-25T00:26:01ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912000-02-01200014120C1-alpha convergence of minimizers of a Ginzburg-Landau functionalYutian LeiZhuoqun WuIn this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u|^p+frac{1 over 4varepsilon^p} int_G(1-|u|^2)^2, $$ on the class $W_g={v in W^{1,p}(G,{mathbb R}^2);v|_{partial G}=g}$, where $g:partial G o S^1$ is a smooth map with Brouwer degree zero, and $p$ is greater than 2. In particular, we show that the minimizer converges to the $p$-harmonic map in $C_{hbox{loc}}^{1,alpha}(G,{mathbb R}^2)$ as $varepsilon$ approaches zero. http://ejde.math.txstate.edu/Volumes/2000/14/abstr.htmlGinzburg-Landau functionalregularizable minimizer. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yutian Lei Zhuoqun Wu |
spellingShingle |
Yutian Lei Zhuoqun Wu C1-alpha convergence of minimizers of a Ginzburg-Landau functional Electronic Journal of Differential Equations Ginzburg-Landau functional regularizable minimizer. |
author_facet |
Yutian Lei Zhuoqun Wu |
author_sort |
Yutian Lei |
title |
C1-alpha convergence of minimizers of a Ginzburg-Landau functional |
title_short |
C1-alpha convergence of minimizers of a Ginzburg-Landau functional |
title_full |
C1-alpha convergence of minimizers of a Ginzburg-Landau functional |
title_fullStr |
C1-alpha convergence of minimizers of a Ginzburg-Landau functional |
title_full_unstemmed |
C1-alpha convergence of minimizers of a Ginzburg-Landau functional |
title_sort |
c1-alpha convergence of minimizers of a ginzburg-landau functional |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2000-02-01 |
description |
In this article we study the minimizers of the functional $$ E_varepsilon(u,G)={1over p}int_G|abla u|^p+frac{1 over 4varepsilon^p} int_G(1-|u|^2)^2, $$ on the class $W_g={v in W^{1,p}(G,{mathbb R}^2);v|_{partial G}=g}$, where $g:partial G o S^1$ is a smooth map with Brouwer degree zero, and $p$ is greater than 2. In particular, we show that the minimizer converges to the $p$-harmonic map in $C_{hbox{loc}}^{1,alpha}(G,{mathbb R}^2)$ as $varepsilon$ approaches zero. |
topic |
Ginzburg-Landau functional regularizable minimizer. |
url |
http://ejde.math.txstate.edu/Volumes/2000/14/abstr.html |
work_keys_str_mv |
AT yutianlei c1alphaconvergenceofminimizersofaginzburglandaufunctional AT zhuoqunwu c1alphaconvergenceofminimizersofaginzburglandaufunctional |
_version_ |
1725346261618393088 |