Enhanced Energy Savings in Indoor Environments with Effective Daylight Utilization and Area Segregation
Daylight utilization is one of the key areas for energy savings in indoor environments. An important factor often not considered by the existing daylight utilization approaches is the segregation of the floor into task areas and non-task areas. It is also observed that the inherent asymmetry in the...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/8/1313 |
id |
doaj-756337881a67497798f482131269a32c |
---|---|
record_format |
Article |
spelling |
doaj-756337881a67497798f482131269a32c2020-11-25T03:41:44ZengMDPI AGSymmetry2073-89942020-08-01121313131310.3390/sym12081313Enhanced Energy Savings in Indoor Environments with Effective Daylight Utilization and Area SegregationMohammad Asif ul Haq0Aminul Islam1ASM Shihavuddin2Md Hasan Maruf3Ahmed Al Mansur4Mohammad Yusri Hassan5Department of Electrical and Electronic Engineering, Green University of Bangladesh (GUB), 220/D, Begum Rokeya Sarani, Dhaka 1207, BangladeshDepartment of Mechanical Engineering, Technical University of Denmark, Produktionstorvet, Building 427, Room 323A, 2800 Kgs. Lyngby, DenmarkDepartment of Electrical and Electronic Engineering, Green University of Bangladesh (GUB), 220/D, Begum Rokeya Sarani, Dhaka 1207, BangladeshDepartment of Electrical and Electronic Engineering, Green University of Bangladesh (GUB), 220/D, Begum Rokeya Sarani, Dhaka 1207, BangladeshDepartment of Electrical and Electronic Engineering, Green University of Bangladesh (GUB), 220/D, Begum Rokeya Sarani, Dhaka 1207, BangladeshCentre of Electrical Energy Systems (CEES), Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor 81310, MalaysiaDaylight utilization is one of the key areas for energy savings in indoor environments. An important factor often not considered by the existing daylight utilization approaches is the segregation of the floor into task areas and non-task areas. It is also observed that the inherent asymmetry in the daylight penetration pattern in most indoor environments is not given consideration while designing artificial lighting arrangements. Moreover, daily and annual daylight availability is found to have a symmetrical variation pattern, which is a significant factor often overlooked in utilizing daylight. Thus, the energy assessment can be inaccurate, leading to an incorrect or impractical evaluation of energy savings. This research proposes a comprehensive new approach to assess the energy-saving potential of daylight utilization in indoor environments. This new method combines two approaches to overcome the aforementioned issues. (1) The considered area is segmented into task area and non-task areas (or surrounding area) and considers different levels of required illuminance for each separate area. (2) The variation of available daylight at the considered location is accounted for by dividing the daylight penetration into multiple levels. For the study, the method is first applied to a simulated office space considering real-life parameters, where the annual energy savings were estimated at 83.67%. For further validation, a comparison with a case from an existing method was also carried out, and the proposed method gave an energy saving estimation of 73.45%. This indicates a 10% higher energy saving estimation as compared to the original study, against which the proposed method was compared.https://www.mdpi.com/2073-8994/12/8/1313energy efficiencyenergy savingdaylight utilizationlighting control systemDIALux |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohammad Asif ul Haq Aminul Islam ASM Shihavuddin Md Hasan Maruf Ahmed Al Mansur Mohammad Yusri Hassan |
spellingShingle |
Mohammad Asif ul Haq Aminul Islam ASM Shihavuddin Md Hasan Maruf Ahmed Al Mansur Mohammad Yusri Hassan Enhanced Energy Savings in Indoor Environments with Effective Daylight Utilization and Area Segregation Symmetry energy efficiency energy saving daylight utilization lighting control system DIALux |
author_facet |
Mohammad Asif ul Haq Aminul Islam ASM Shihavuddin Md Hasan Maruf Ahmed Al Mansur Mohammad Yusri Hassan |
author_sort |
Mohammad Asif ul Haq |
title |
Enhanced Energy Savings in Indoor Environments with Effective Daylight Utilization and Area Segregation |
title_short |
Enhanced Energy Savings in Indoor Environments with Effective Daylight Utilization and Area Segregation |
title_full |
Enhanced Energy Savings in Indoor Environments with Effective Daylight Utilization and Area Segregation |
title_fullStr |
Enhanced Energy Savings in Indoor Environments with Effective Daylight Utilization and Area Segregation |
title_full_unstemmed |
Enhanced Energy Savings in Indoor Environments with Effective Daylight Utilization and Area Segregation |
title_sort |
enhanced energy savings in indoor environments with effective daylight utilization and area segregation |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-08-01 |
description |
Daylight utilization is one of the key areas for energy savings in indoor environments. An important factor often not considered by the existing daylight utilization approaches is the segregation of the floor into task areas and non-task areas. It is also observed that the inherent asymmetry in the daylight penetration pattern in most indoor environments is not given consideration while designing artificial lighting arrangements. Moreover, daily and annual daylight availability is found to have a symmetrical variation pattern, which is a significant factor often overlooked in utilizing daylight. Thus, the energy assessment can be inaccurate, leading to an incorrect or impractical evaluation of energy savings. This research proposes a comprehensive new approach to assess the energy-saving potential of daylight utilization in indoor environments. This new method combines two approaches to overcome the aforementioned issues. (1) The considered area is segmented into task area and non-task areas (or surrounding area) and considers different levels of required illuminance for each separate area. (2) The variation of available daylight at the considered location is accounted for by dividing the daylight penetration into multiple levels. For the study, the method is first applied to a simulated office space considering real-life parameters, where the annual energy savings were estimated at 83.67%. For further validation, a comparison with a case from an existing method was also carried out, and the proposed method gave an energy saving estimation of 73.45%. This indicates a 10% higher energy saving estimation as compared to the original study, against which the proposed method was compared. |
topic |
energy efficiency energy saving daylight utilization lighting control system DIALux |
url |
https://www.mdpi.com/2073-8994/12/8/1313 |
work_keys_str_mv |
AT mohammadasifulhaq enhancedenergysavingsinindoorenvironmentswitheffectivedaylightutilizationandareasegregation AT aminulislam enhancedenergysavingsinindoorenvironmentswitheffectivedaylightutilizationandareasegregation AT asmshihavuddin enhancedenergysavingsinindoorenvironmentswitheffectivedaylightutilizationandareasegregation AT mdhasanmaruf enhancedenergysavingsinindoorenvironmentswitheffectivedaylightutilizationandareasegregation AT ahmedalmansur enhancedenergysavingsinindoorenvironmentswitheffectivedaylightutilizationandareasegregation AT mohammadyusrihassan enhancedenergysavingsinindoorenvironmentswitheffectivedaylightutilizationandareasegregation |
_version_ |
1724528699443773440 |