Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces
Abstract In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: u ( s ) = ϕ i ( s ) + ∫ a b K i ( s , r ,...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-016-1286-7 |
id |
doaj-752ffc7c3b0745b090e1f28514af9a0f |
---|---|
record_format |
Article |
spelling |
doaj-752ffc7c3b0745b090e1f28514af9a0f2020-11-25T00:06:34ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-01-012017111210.1186/s13660-016-1286-7Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spacesMian Bahadur Zada0Muhammad Sarwar1Stojan Radenović2Department of Mathematics, University of MalakandDepartment of Mathematics, University of MalakandFaculty of Mechanical Engineering, Universitry of BelgradeAbstract In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: u ( s ) = ϕ i ( s ) + ∫ a b K i ( s , r , u ( r ) ) d r , $$u(s)=\phi_{i}(s)+ \int_{a}^{b}K_{i}\bigl(s, r,u(r)\bigr) \,dr, $$ where s ∈ ( a , b ) ⊆ R $s\in(a,b)\subseteq\mathbb{R}$ ; u , ϕ i ∈ C ( ( a , b ) , R n ) $u, \phi_{i}\in C((a,b),\mathbb{R}^{n})$ and K i : ( a , b ) × ( a , b ) × R n → R n $K_{i}:(a,b)\times(a,b)\times \mathbb{R}^{n}\rightarrow\mathbb{R}^{n}$ , i = 1 , 2 , … , 6 $i=1,2,\ldots,6 $ and u ( s ) = p i ( s ) + λ ∫ 0 t m ( s , r ) g i ( r , u ( r ) ) d r + μ ∫ 0 ∞ n ( s , r ) h i ( r , u ( r ) ) d r , $$u(s)=p_{i}(s)+\lambda \int_{0}^{t}m(s, r)g_{i}\bigl(r,u(r) \bigr)\,dr+\mu \int_{0}^{\infty}n(s, r)h_{i}\bigl(r,u(r) \bigr)\,dr, $$ where s ∈ ( 0 , ∞ ) $s\in(0,\infty)$ , λ , μ ∈ R $\lambda,\mu\in\mathbb{R}$ , u, p i $p_{i}$ , m ( s , r ) $m(s, r)$ , n ( s , r ) $n(s, r)$ , g i ( r , u ( r ) ) $g_{i}(r,u(r))$ and h i ( r , u ( r ) ) $h_{i}(r,u(r))$ , i = 1 , 2 , … , 6 $i=1,2,\ldots,6$ , are real-valued measurable functions both in s and r on ( 0 , ∞ ) $(0,\infty)$ .http://link.springer.com/article/10.1186/s13660-016-1286-7common fixed pointweakly compatible mapscommon ( C L R ) $(CLR)$ -propertycommon ( E . A ) $(E.A)$ -propertyUrysohn integral equationsVolterra-Hammerstein integral equations |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mian Bahadur Zada Muhammad Sarwar Stojan Radenović |
spellingShingle |
Mian Bahadur Zada Muhammad Sarwar Stojan Radenović Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces Journal of Inequalities and Applications common fixed point weakly compatible maps common ( C L R ) $(CLR)$ -property common ( E . A ) $(E.A)$ -property Urysohn integral equations Volterra-Hammerstein integral equations |
author_facet |
Mian Bahadur Zada Muhammad Sarwar Stojan Radenović |
author_sort |
Mian Bahadur Zada |
title |
Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces |
title_short |
Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces |
title_full |
Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces |
title_fullStr |
Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces |
title_full_unstemmed |
Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces |
title_sort |
existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2017-01-01 |
description |
Abstract In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: u ( s ) = ϕ i ( s ) + ∫ a b K i ( s , r , u ( r ) ) d r , $$u(s)=\phi_{i}(s)+ \int_{a}^{b}K_{i}\bigl(s, r,u(r)\bigr) \,dr, $$ where s ∈ ( a , b ) ⊆ R $s\in(a,b)\subseteq\mathbb{R}$ ; u , ϕ i ∈ C ( ( a , b ) , R n ) $u, \phi_{i}\in C((a,b),\mathbb{R}^{n})$ and K i : ( a , b ) × ( a , b ) × R n → R n $K_{i}:(a,b)\times(a,b)\times \mathbb{R}^{n}\rightarrow\mathbb{R}^{n}$ , i = 1 , 2 , … , 6 $i=1,2,\ldots,6 $ and u ( s ) = p i ( s ) + λ ∫ 0 t m ( s , r ) g i ( r , u ( r ) ) d r + μ ∫ 0 ∞ n ( s , r ) h i ( r , u ( r ) ) d r , $$u(s)=p_{i}(s)+\lambda \int_{0}^{t}m(s, r)g_{i}\bigl(r,u(r) \bigr)\,dr+\mu \int_{0}^{\infty}n(s, r)h_{i}\bigl(r,u(r) \bigr)\,dr, $$ where s ∈ ( 0 , ∞ ) $s\in(0,\infty)$ , λ , μ ∈ R $\lambda,\mu\in\mathbb{R}$ , u, p i $p_{i}$ , m ( s , r ) $m(s, r)$ , n ( s , r ) $n(s, r)$ , g i ( r , u ( r ) ) $g_{i}(r,u(r))$ and h i ( r , u ( r ) ) $h_{i}(r,u(r))$ , i = 1 , 2 , … , 6 $i=1,2,\ldots,6$ , are real-valued measurable functions both in s and r on ( 0 , ∞ ) $(0,\infty)$ . |
topic |
common fixed point weakly compatible maps common ( C L R ) $(CLR)$ -property common ( E . A ) $(E.A)$ -property Urysohn integral equations Volterra-Hammerstein integral equations |
url |
http://link.springer.com/article/10.1186/s13660-016-1286-7 |
work_keys_str_mv |
AT mianbahadurzada existenceofuniquecommonsolutiontothesystemofnonlinearintegralequationsviafixedpointresultsinincompletemetricspaces AT muhammadsarwar existenceofuniquecommonsolutiontothesystemofnonlinearintegralequationsviafixedpointresultsinincompletemetricspaces AT stojanradenovic existenceofuniquecommonsolutiontothesystemofnonlinearintegralequationsviafixedpointresultsinincompletemetricspaces |
_version_ |
1725421381426872320 |