Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces

Abstract In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: u ( s ) = ϕ i ( s ) + ∫ a b K i ( s , r ,...

Full description

Bibliographic Details
Main Authors: Mian Bahadur Zada, Muhammad Sarwar, Stojan Radenović
Format: Article
Language:English
Published: SpringerOpen 2017-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1286-7
id doaj-752ffc7c3b0745b090e1f28514af9a0f
record_format Article
spelling doaj-752ffc7c3b0745b090e1f28514af9a0f2020-11-25T00:06:34ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-01-012017111210.1186/s13660-016-1286-7Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spacesMian Bahadur Zada0Muhammad Sarwar1Stojan Radenović2Department of Mathematics, University of MalakandDepartment of Mathematics, University of MalakandFaculty of Mechanical Engineering, Universitry of BelgradeAbstract In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: u ( s ) = ϕ i ( s ) + ∫ a b K i ( s , r , u ( r ) ) d r , $$u(s)=\phi_{i}(s)+ \int_{a}^{b}K_{i}\bigl(s, r,u(r)\bigr) \,dr, $$ where s ∈ ( a , b ) ⊆ R $s\in(a,b)\subseteq\mathbb{R}$ ; u , ϕ i ∈ C ( ( a , b ) , R n ) $u, \phi_{i}\in C((a,b),\mathbb{R}^{n})$ and K i : ( a , b ) × ( a , b ) × R n → R n $K_{i}:(a,b)\times(a,b)\times \mathbb{R}^{n}\rightarrow\mathbb{R}^{n}$ , i = 1 , 2 , … , 6 $i=1,2,\ldots,6 $ and u ( s ) = p i ( s ) + λ ∫ 0 t m ( s , r ) g i ( r , u ( r ) ) d r + μ ∫ 0 ∞ n ( s , r ) h i ( r , u ( r ) ) d r , $$u(s)=p_{i}(s)+\lambda \int_{0}^{t}m(s, r)g_{i}\bigl(r,u(r) \bigr)\,dr+\mu \int_{0}^{\infty}n(s, r)h_{i}\bigl(r,u(r) \bigr)\,dr, $$ where s ∈ ( 0 , ∞ ) $s\in(0,\infty)$ , λ , μ ∈ R $\lambda,\mu\in\mathbb{R}$ , u, p i $p_{i}$ , m ( s , r ) $m(s, r)$ , n ( s , r ) $n(s, r)$ , g i ( r , u ( r ) ) $g_{i}(r,u(r))$ and h i ( r , u ( r ) ) $h_{i}(r,u(r))$ , i = 1 , 2 , … , 6 $i=1,2,\ldots,6$ , are real-valued measurable functions both in s and r on ( 0 , ∞ ) $(0,\infty)$ .http://link.springer.com/article/10.1186/s13660-016-1286-7common fixed pointweakly compatible mapscommon ( C L R ) $(CLR)$ -propertycommon ( E . A ) $(E.A)$ -propertyUrysohn integral equationsVolterra-Hammerstein integral equations
collection DOAJ
language English
format Article
sources DOAJ
author Mian Bahadur Zada
Muhammad Sarwar
Stojan Radenović
spellingShingle Mian Bahadur Zada
Muhammad Sarwar
Stojan Radenović
Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces
Journal of Inequalities and Applications
common fixed point
weakly compatible maps
common ( C L R ) $(CLR)$ -property
common ( E . A ) $(E.A)$ -property
Urysohn integral equations
Volterra-Hammerstein integral equations
author_facet Mian Bahadur Zada
Muhammad Sarwar
Stojan Radenović
author_sort Mian Bahadur Zada
title Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces
title_short Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces
title_full Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces
title_fullStr Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces
title_full_unstemmed Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces
title_sort existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2017-01-01
description Abstract In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: u ( s ) = ϕ i ( s ) + ∫ a b K i ( s , r , u ( r ) ) d r , $$u(s)=\phi_{i}(s)+ \int_{a}^{b}K_{i}\bigl(s, r,u(r)\bigr) \,dr, $$ where s ∈ ( a , b ) ⊆ R $s\in(a,b)\subseteq\mathbb{R}$ ; u , ϕ i ∈ C ( ( a , b ) , R n ) $u, \phi_{i}\in C((a,b),\mathbb{R}^{n})$ and K i : ( a , b ) × ( a , b ) × R n → R n $K_{i}:(a,b)\times(a,b)\times \mathbb{R}^{n}\rightarrow\mathbb{R}^{n}$ , i = 1 , 2 , … , 6 $i=1,2,\ldots,6 $ and u ( s ) = p i ( s ) + λ ∫ 0 t m ( s , r ) g i ( r , u ( r ) ) d r + μ ∫ 0 ∞ n ( s , r ) h i ( r , u ( r ) ) d r , $$u(s)=p_{i}(s)+\lambda \int_{0}^{t}m(s, r)g_{i}\bigl(r,u(r) \bigr)\,dr+\mu \int_{0}^{\infty}n(s, r)h_{i}\bigl(r,u(r) \bigr)\,dr, $$ where s ∈ ( 0 , ∞ ) $s\in(0,\infty)$ , λ , μ ∈ R $\lambda,\mu\in\mathbb{R}$ , u, p i $p_{i}$ , m ( s , r ) $m(s, r)$ , n ( s , r ) $n(s, r)$ , g i ( r , u ( r ) ) $g_{i}(r,u(r))$ and h i ( r , u ( r ) ) $h_{i}(r,u(r))$ , i = 1 , 2 , … , 6 $i=1,2,\ldots,6$ , are real-valued measurable functions both in s and r on ( 0 , ∞ ) $(0,\infty)$ .
topic common fixed point
weakly compatible maps
common ( C L R ) $(CLR)$ -property
common ( E . A ) $(E.A)$ -property
Urysohn integral equations
Volterra-Hammerstein integral equations
url http://link.springer.com/article/10.1186/s13660-016-1286-7
work_keys_str_mv AT mianbahadurzada existenceofuniquecommonsolutiontothesystemofnonlinearintegralequationsviafixedpointresultsinincompletemetricspaces
AT muhammadsarwar existenceofuniquecommonsolutiontothesystemofnonlinearintegralequationsviafixedpointresultsinincompletemetricspaces
AT stojanradenovic existenceofuniquecommonsolutiontothesystemofnonlinearintegralequationsviafixedpointresultsinincompletemetricspaces
_version_ 1725421381426872320