Summary: | Tropical Algebra is used to model the dynamics of Timed Event Graphs (TEG), a particular class of Timed Discrete-Event System (TDES) in which we are interested only in synchronization and delay phenomena. Whenever this TEG has control inputs, we can use them to control the synchronization of the system to achieve some objective. Thus, this paper formulates a framework based on tropical algebra and lexicographic optimization to synchronize a TEG when dealing with many synchronization objectives that are ranked in previous priority order. We call this kind of problem the Tropical Lexicographic Synchronization Optimization (TLSO). This work develops a solution to this problem, based on Tropical Fractional Linear Programming (TFLP) and lexicographic optimization concepts. In this way, the basics of tropical algebra are determined, including essential terms to this paper, such as left and right residuations, and the following stages of the solution to the TLSO problem are explained. Therefore, this work presents a general framework based on structured algebraic models with application to TEG synchronization. By synchronization, we mean balancing and organizing events chronologically in order to achieve the desired goal. So, we are dealing with concepts closely related to symmetry ones. An illustrative numerical example is presented, which demonstrates the implementation of the proposed algorithms. The acquired results confirm the efficiency of the proposed methodology. Codes used for implementing the algorithms are listed in the appendix section of the article.
|