A Discriminative Model for Polyphonic Piano Transcription

We present a discriminative model for polyphonic piano transcription. Support vector machines trained on spectral features are used to classify frame-level note instances. The classifier outputs are temporally constrained via hidden Markov models, and the proposed system is used to transcribe both s...

Full description

Bibliographic Details
Main Authors: Daniel P. W. Ellis, Graham E. Poliner
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:EURASIP Journal on Advances in Signal Processing
Online Access:http://dx.doi.org/10.1155/2007/48317
Description
Summary:We present a discriminative model for polyphonic piano transcription. Support vector machines trained on spectral features are used to classify frame-level note instances. The classifier outputs are temporally constrained via hidden Markov models, and the proposed system is used to transcribe both synthesized and real piano recordings. A frame-level transcription accuracy of 68% was achieved on a newly generated test set, and direct comparisons to previous approaches are provided.
ISSN:1687-6172
1687-6180