Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis

Concussion is a significant public health problem affecting 1.6–2.4 million Americans annually. An alternative to reducing the burden of concussion is to reduce its incidence with improved protective equipment and injury mitigation systems. Finite element (FE) models of the brain response to blunt t...

Full description

Bibliographic Details
Main Authors: Erin D. Anderson, J. Sebastian Giudice, Taotao Wu, Matthew B. Panzer, David F. Meaney
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-04-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fbioe.2020.00309/full
id doaj-74cff93f170c4def8980c0e8b7a43d44
record_format Article
spelling doaj-74cff93f170c4def8980c0e8b7a43d442020-11-25T02:03:41ZengFrontiers Media S.A.Frontiers in Bioengineering and Biotechnology2296-41852020-04-01810.3389/fbioe.2020.00309511125Predicting Concussion Outcome by Integrating Finite Element Modeling and Network AnalysisErin D. Anderson0J. Sebastian Giudice1Taotao Wu2Matthew B. Panzer3Matthew B. Panzer4David F. Meaney5David F. Meaney6Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United StatesDepartment of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United StatesDepartment of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United StatesDepartment of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United StatesDepartment of Biomedical Engineering, University of Virginia, Charlottesville, VA, United StatesDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA, United StatesDepartment of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United StatesConcussion is a significant public health problem affecting 1.6–2.4 million Americans annually. An alternative to reducing the burden of concussion is to reduce its incidence with improved protective equipment and injury mitigation systems. Finite element (FE) models of the brain response to blunt trauma are often used to estimate injury potential and can lead to improved helmet designs. However, these models have yet to incorporate how the patterns of brain connectivity disruption after impact affects the relay of information in the injured brain. Furthermore, FE brain models typically do not consider the differences in individual brain structural connectivities and their purported role in concussion risk. Here, we use graph theory techniques to integrate brain deformations predicted from FE modeling with measurements of network efficiency to identify brain regions whose connectivity characteristics may influence concussion risk. We computed maximum principal strain in 129 brain regions using head kinematics measured from 53 professional football impact reconstructions that included concussive and non-concussive cases. In parallel, using diffusion spectrum imaging data from 30 healthy subjects, we simulated structural lesioning of each of the same 129 brain regions. We simulated lesioning by removing each region one at a time along with all its connections. In turn, we computed the resultant change in global efficiency to identify regions important for network communication. We found that brain regions that deformed the most during an impact did not overlap with regions most important for network communication (Pearson's correlation, ρ = 0.07; p = 0.45). Despite this dissimilarity, we found that predicting concussion incidence was equally accurate when considering either areas of high strain or of high importance to global efficiency. Interestingly, accuracy for concussion prediction varied considerably across the 30 healthy connectomes. These results suggest that individual network structure is an important confounding variable in concussion prediction and that further investigation of its role may improve concussion prediction and lead to the development of more effective protective equipment.https://www.frontiersin.org/article/10.3389/fbioe.2020.00309/fullconcussionbiomechanicsnetworksstructural connectivitygraph theory
collection DOAJ
language English
format Article
sources DOAJ
author Erin D. Anderson
J. Sebastian Giudice
Taotao Wu
Matthew B. Panzer
Matthew B. Panzer
David F. Meaney
David F. Meaney
spellingShingle Erin D. Anderson
J. Sebastian Giudice
Taotao Wu
Matthew B. Panzer
Matthew B. Panzer
David F. Meaney
David F. Meaney
Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis
Frontiers in Bioengineering and Biotechnology
concussion
biomechanics
networks
structural connectivity
graph theory
author_facet Erin D. Anderson
J. Sebastian Giudice
Taotao Wu
Matthew B. Panzer
Matthew B. Panzer
David F. Meaney
David F. Meaney
author_sort Erin D. Anderson
title Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis
title_short Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis
title_full Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis
title_fullStr Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis
title_full_unstemmed Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis
title_sort predicting concussion outcome by integrating finite element modeling and network analysis
publisher Frontiers Media S.A.
series Frontiers in Bioengineering and Biotechnology
issn 2296-4185
publishDate 2020-04-01
description Concussion is a significant public health problem affecting 1.6–2.4 million Americans annually. An alternative to reducing the burden of concussion is to reduce its incidence with improved protective equipment and injury mitigation systems. Finite element (FE) models of the brain response to blunt trauma are often used to estimate injury potential and can lead to improved helmet designs. However, these models have yet to incorporate how the patterns of brain connectivity disruption after impact affects the relay of information in the injured brain. Furthermore, FE brain models typically do not consider the differences in individual brain structural connectivities and their purported role in concussion risk. Here, we use graph theory techniques to integrate brain deformations predicted from FE modeling with measurements of network efficiency to identify brain regions whose connectivity characteristics may influence concussion risk. We computed maximum principal strain in 129 brain regions using head kinematics measured from 53 professional football impact reconstructions that included concussive and non-concussive cases. In parallel, using diffusion spectrum imaging data from 30 healthy subjects, we simulated structural lesioning of each of the same 129 brain regions. We simulated lesioning by removing each region one at a time along with all its connections. In turn, we computed the resultant change in global efficiency to identify regions important for network communication. We found that brain regions that deformed the most during an impact did not overlap with regions most important for network communication (Pearson's correlation, ρ = 0.07; p = 0.45). Despite this dissimilarity, we found that predicting concussion incidence was equally accurate when considering either areas of high strain or of high importance to global efficiency. Interestingly, accuracy for concussion prediction varied considerably across the 30 healthy connectomes. These results suggest that individual network structure is an important confounding variable in concussion prediction and that further investigation of its role may improve concussion prediction and lead to the development of more effective protective equipment.
topic concussion
biomechanics
networks
structural connectivity
graph theory
url https://www.frontiersin.org/article/10.3389/fbioe.2020.00309/full
work_keys_str_mv AT erindanderson predictingconcussionoutcomebyintegratingfiniteelementmodelingandnetworkanalysis
AT jsebastiangiudice predictingconcussionoutcomebyintegratingfiniteelementmodelingandnetworkanalysis
AT taotaowu predictingconcussionoutcomebyintegratingfiniteelementmodelingandnetworkanalysis
AT matthewbpanzer predictingconcussionoutcomebyintegratingfiniteelementmodelingandnetworkanalysis
AT matthewbpanzer predictingconcussionoutcomebyintegratingfiniteelementmodelingandnetworkanalysis
AT davidfmeaney predictingconcussionoutcomebyintegratingfiniteelementmodelingandnetworkanalysis
AT davidfmeaney predictingconcussionoutcomebyintegratingfiniteelementmodelingandnetworkanalysis
_version_ 1724946436832886784