MODEL OF VULNERABILITY IDENTIFICATION IN UNSTABLE NETWORK INTERACTIONS WITH AUTOMATED SYSTEM

The article gives a description of the vulnerabilities detection model in case of unstable network interactions with the  automated system (AS). The process of detection of AS vulnerabilities in these conditions has the following drawbacks: a  narrow scope of application of the existing models, low ...

Full description

Bibliographic Details
Main Authors: V. A. Minaev, I. D. Korolev, A. V. Mazin, S. A. Konovalenko
Format: Article
Language:English
Published: CRI «Electronics» 2018-06-01
Series:Радиопромышленность
Subjects:
Online Access:https://www.radioprom.org/jour/article/view/305
id doaj-74c6e3c1755e45839ba288ac8520c6b6
record_format Article
spelling doaj-74c6e3c1755e45839ba288ac8520c6b62021-07-28T13:52:36ZengCRI «Electronics»Радиопромышленность2413-95992541-870X2018-06-01282485710.21778/2413-9599-2018-2-48-57287MODEL OF VULNERABILITY IDENTIFICATION IN UNSTABLE NETWORK INTERACTIONS WITH AUTOMATED SYSTEMV. A. Minaev0I. D. Korolev1A. V. Mazin2S. A. Konovalenko3Bauman Moscow State Technical UniversityKrasnodar Higher Military School named after General of the Army S.M. ShtemenkoBauman Moscow State Technical UniversityKrasnodar Higher Military School named after General of the Army S.M. ShtemenkoThe article gives a description of the vulnerabilities detection model in case of unstable network interactions with the  automated system (AS). The process of detection of AS vulnerabilities in these conditions has the following drawbacks: a  narrow scope of application of the existing models, low responsiveness level and lack of completeness of the AS actual  condition, low reliability of control results. On the basis of the automata theory a structural model has been constructed  that ensures detection of AS vulnerabilities in the reviewed conditions. The process of the model’s operation in conditions  of unstable network interactions with the AS is described. A flow chart of the algorithm that provides a possibility for  practical implementation of the proposed model is constructed. The vulnerability detection model, which is presented in  the article makes it possible to ensure promptness, completeness and reliability of monitoring the real condition of ASs  functioning in unstable network interactions; to expand the scope of application of the existing models and methods for identifying vulnerabilities for dynamic AS featured by a relatively short time interval of operation; to automate the process  of restoring control over AS interrupted by external factors; adaptively manage the decision-making time; to provide the  iterative approach to identifying the AS vulnerabilities.https://www.radioprom.org/jour/article/view/305keywords: model vulnerability security automated system instability network interaction algorithm automata theory
collection DOAJ
language English
format Article
sources DOAJ
author V. A. Minaev
I. D. Korolev
A. V. Mazin
S. A. Konovalenko
spellingShingle V. A. Minaev
I. D. Korolev
A. V. Mazin
S. A. Konovalenko
MODEL OF VULNERABILITY IDENTIFICATION IN UNSTABLE NETWORK INTERACTIONS WITH AUTOMATED SYSTEM
Радиопромышленность
keywords: model
 vulnerability
 security
 automated system
 instability
 network interaction
 algorithm
 automata theory
author_facet V. A. Minaev
I. D. Korolev
A. V. Mazin
S. A. Konovalenko
author_sort V. A. Minaev
title MODEL OF VULNERABILITY IDENTIFICATION IN UNSTABLE NETWORK INTERACTIONS WITH AUTOMATED SYSTEM
title_short MODEL OF VULNERABILITY IDENTIFICATION IN UNSTABLE NETWORK INTERACTIONS WITH AUTOMATED SYSTEM
title_full MODEL OF VULNERABILITY IDENTIFICATION IN UNSTABLE NETWORK INTERACTIONS WITH AUTOMATED SYSTEM
title_fullStr MODEL OF VULNERABILITY IDENTIFICATION IN UNSTABLE NETWORK INTERACTIONS WITH AUTOMATED SYSTEM
title_full_unstemmed MODEL OF VULNERABILITY IDENTIFICATION IN UNSTABLE NETWORK INTERACTIONS WITH AUTOMATED SYSTEM
title_sort model of vulnerability identification in unstable network interactions with automated system
publisher CRI «Electronics»
series Радиопромышленность
issn 2413-9599
2541-870X
publishDate 2018-06-01
description The article gives a description of the vulnerabilities detection model in case of unstable network interactions with the  automated system (AS). The process of detection of AS vulnerabilities in these conditions has the following drawbacks: a  narrow scope of application of the existing models, low responsiveness level and lack of completeness of the AS actual  condition, low reliability of control results. On the basis of the automata theory a structural model has been constructed  that ensures detection of AS vulnerabilities in the reviewed conditions. The process of the model’s operation in conditions  of unstable network interactions with the AS is described. A flow chart of the algorithm that provides a possibility for  practical implementation of the proposed model is constructed. The vulnerability detection model, which is presented in  the article makes it possible to ensure promptness, completeness and reliability of monitoring the real condition of ASs  functioning in unstable network interactions; to expand the scope of application of the existing models and methods for identifying vulnerabilities for dynamic AS featured by a relatively short time interval of operation; to automate the process  of restoring control over AS interrupted by external factors; adaptively manage the decision-making time; to provide the  iterative approach to identifying the AS vulnerabilities.
topic keywords: model
 vulnerability
 security
 automated system
 instability
 network interaction
 algorithm
 automata theory
url https://www.radioprom.org/jour/article/view/305
work_keys_str_mv AT vaminaev modelofvulnerabilityidentificationinunstablenetworkinteractionswithautomatedsystem
AT idkorolev modelofvulnerabilityidentificationinunstablenetworkinteractionswithautomatedsystem
AT avmazin modelofvulnerabilityidentificationinunstablenetworkinteractionswithautomatedsystem
AT sakonovalenko modelofvulnerabilityidentificationinunstablenetworkinteractionswithautomatedsystem
_version_ 1721270392450973696