Outlier Detection Methods for Uncovering of Critical Events in Historical Phasor Measurement Records
The scope of this survey is the uncovering of potential critical events from mixed PMU data sets. An unsupervised procedure is introduced with the use of different outlier detection methods. For that, different techniques for signal analysis are used to generate features in time and frequency domain...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://doi.org/10.1051/e3sconf/20186408006 |
Summary: | The scope of this survey is the uncovering of potential critical events from mixed PMU data sets. An unsupervised procedure is introduced with the use of different outlier detection methods. For that, different techniques for signal analysis are used to generate features in time and frequency domain as well as linear and non-linear dimension reduction techniques. That approach enables the exploration of critical grid dynamics in power systems without prior knowledge about existing failure patterns. Furthermore new failure patterns can be extracted for the creation of training data sets used for online detection algorithms. |
---|---|
ISSN: | 2267-1242 |