The critical case for a semilinear weakly hyperbolic equation

We prove a global existence result for the Cauchy problem, in the three-dimensional space, associated with the equation $$ u_{tt}-a_lambda(t) Delta_x u=-u|u|^{p(lambda)-1} $$ where $a_lambda(t)ge 0$ and behaves as $(t-t_0)^lambda$ close to some $t_0$ greater than zero with $a(t_0)=0$, and $p(lambd...

Full description

Bibliographic Details
Main Authors: Luca Fanelli, Sandra Lucente
Format: Article
Language:English
Published: Texas State University 2004-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2004/101/abstr.thml
id doaj-749e5525115d44f9aba65dc2c497f7f0
record_format Article
spelling doaj-749e5525115d44f9aba65dc2c497f7f02020-11-25T01:25:41ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912004-08-012004101113The critical case for a semilinear weakly hyperbolic equationLuca FanelliSandra LucenteWe prove a global existence result for the Cauchy problem, in the three-dimensional space, associated with the equation $$ u_{tt}-a_lambda(t) Delta_x u=-u|u|^{p(lambda)-1} $$ where $a_lambda(t)ge 0$ and behaves as $(t-t_0)^lambda$ close to some $t_0$ greater than zero with $a(t_0)=0$, and $p(lambda)=(3lambda+10)/(3lambda+2)$ with $3le p(lambda)le 5$. This means that we deal with the superconformal, critical nonlinear case. Moreover we assume a small initial energy. http://ejde.math.txstate.edu/Volumes/2004/101/abstr.thmlGlobal existencesemilinear wave equations.
collection DOAJ
language English
format Article
sources DOAJ
author Luca Fanelli
Sandra Lucente
spellingShingle Luca Fanelli
Sandra Lucente
The critical case for a semilinear weakly hyperbolic equation
Electronic Journal of Differential Equations
Global existence
semilinear wave equations.
author_facet Luca Fanelli
Sandra Lucente
author_sort Luca Fanelli
title The critical case for a semilinear weakly hyperbolic equation
title_short The critical case for a semilinear weakly hyperbolic equation
title_full The critical case for a semilinear weakly hyperbolic equation
title_fullStr The critical case for a semilinear weakly hyperbolic equation
title_full_unstemmed The critical case for a semilinear weakly hyperbolic equation
title_sort critical case for a semilinear weakly hyperbolic equation
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2004-08-01
description We prove a global existence result for the Cauchy problem, in the three-dimensional space, associated with the equation $$ u_{tt}-a_lambda(t) Delta_x u=-u|u|^{p(lambda)-1} $$ where $a_lambda(t)ge 0$ and behaves as $(t-t_0)^lambda$ close to some $t_0$ greater than zero with $a(t_0)=0$, and $p(lambda)=(3lambda+10)/(3lambda+2)$ with $3le p(lambda)le 5$. This means that we deal with the superconformal, critical nonlinear case. Moreover we assume a small initial energy.
topic Global existence
semilinear wave equations.
url http://ejde.math.txstate.edu/Volumes/2004/101/abstr.thml
work_keys_str_mv AT lucafanelli thecriticalcaseforasemilinearweaklyhyperbolicequation
AT sandralucente thecriticalcaseforasemilinearweaklyhyperbolicequation
AT lucafanelli criticalcaseforasemilinearweaklyhyperbolicequation
AT sandralucente criticalcaseforasemilinearweaklyhyperbolicequation
_version_ 1725112496977608704