Convective systems observed by ground-based radar during the seasonal march of Asian summer monsoons in the middle of Thailand

Understanding the characteristics of clouds is essential to support disaster mitigation and improvement of cultivation planning. Convective systems (CS) are a major contributor to the total number of rain systems over the tropics. In this study, the spatio-temporal characteristics of CSs extracted f...

Full description

Bibliographic Details
Main Authors: Nattapon Mahavik, Sarintip Tantanee
Format: Article
Language:English
Published: Khon Kaen University 2019-12-01
Series:Engineering and Applied Science Research
Subjects:
Online Access:https://www.tci-thaijo.org/index.php/easr/article/download/181046/155872/
id doaj-749e130ec10645d5aae8d4d57cc7afea
record_format Article
spelling doaj-749e130ec10645d5aae8d4d57cc7afea2020-11-25T01:17:06ZengKhon Kaen UniversityEngineering and Applied Science Research2539-61612539-62182019-12-0146431833010.14456/easr.2019.36Convective systems observed by ground-based radar during the seasonal march of Asian summer monsoons in the middle of ThailandNattapon MahavikSarintip TantaneeUnderstanding the characteristics of clouds is essential to support disaster mitigation and improvement of cultivation planning. Convective systems (CS) are a major contributor to the total number of rain systems over the tropics. In this study, the spatio-temporal characteristics of CSs extracted from instantaneous ground-based radar observations in Phetchabun, in central Thailand, were investigated during the seasonal march of Asian summer monsoons from July to September of 2010. The Open Source Library for Weather Radar Data Processing (Wradlib) was used to create gridded radar reflectivity at instantaneously observed times at a constant altitude of 3 km above the mean sea surface level. The geometric properties of the largest CS, such as echo size, fitted ellipse, and centroid, were also extracted and analyzed by applying the OpenCV library in a Python environment. CS classification produces two classes of CSs based on their speed, stationary and propagating. Propagating CSs are most frequent in August, accounting for 20% of the total number. Additionally, the propagating CSs in August cover relatively larger areas and produce stronger radar echoes than others, while stationary CSs in August have relatively more elongated forms. Classifying CSs based on direction, previous instantaneous scans show that the westerly class dominates across the study area, especially in August. Moreover, the westerly class is associated with stronger radar echoes compared to the easterly class. Additionally, the average speed of the easterly class has a tendency to decrease toward the end of the rainy season. The hot spot area with regard to CS severity has been identified as being in the southwest part of the study area.https://www.tci-thaijo.org/index.php/easr/article/download/181046/155872/convective systemsground-based radarhot spot analysisclassify moving rain systemsthailand
collection DOAJ
language English
format Article
sources DOAJ
author Nattapon Mahavik
Sarintip Tantanee
spellingShingle Nattapon Mahavik
Sarintip Tantanee
Convective systems observed by ground-based radar during the seasonal march of Asian summer monsoons in the middle of Thailand
Engineering and Applied Science Research
convective systems
ground-based radar
hot spot analysis
classify moving rain systems
thailand
author_facet Nattapon Mahavik
Sarintip Tantanee
author_sort Nattapon Mahavik
title Convective systems observed by ground-based radar during the seasonal march of Asian summer monsoons in the middle of Thailand
title_short Convective systems observed by ground-based radar during the seasonal march of Asian summer monsoons in the middle of Thailand
title_full Convective systems observed by ground-based radar during the seasonal march of Asian summer monsoons in the middle of Thailand
title_fullStr Convective systems observed by ground-based radar during the seasonal march of Asian summer monsoons in the middle of Thailand
title_full_unstemmed Convective systems observed by ground-based radar during the seasonal march of Asian summer monsoons in the middle of Thailand
title_sort convective systems observed by ground-based radar during the seasonal march of asian summer monsoons in the middle of thailand
publisher Khon Kaen University
series Engineering and Applied Science Research
issn 2539-6161
2539-6218
publishDate 2019-12-01
description Understanding the characteristics of clouds is essential to support disaster mitigation and improvement of cultivation planning. Convective systems (CS) are a major contributor to the total number of rain systems over the tropics. In this study, the spatio-temporal characteristics of CSs extracted from instantaneous ground-based radar observations in Phetchabun, in central Thailand, were investigated during the seasonal march of Asian summer monsoons from July to September of 2010. The Open Source Library for Weather Radar Data Processing (Wradlib) was used to create gridded radar reflectivity at instantaneously observed times at a constant altitude of 3 km above the mean sea surface level. The geometric properties of the largest CS, such as echo size, fitted ellipse, and centroid, were also extracted and analyzed by applying the OpenCV library in a Python environment. CS classification produces two classes of CSs based on their speed, stationary and propagating. Propagating CSs are most frequent in August, accounting for 20% of the total number. Additionally, the propagating CSs in August cover relatively larger areas and produce stronger radar echoes than others, while stationary CSs in August have relatively more elongated forms. Classifying CSs based on direction, previous instantaneous scans show that the westerly class dominates across the study area, especially in August. Moreover, the westerly class is associated with stronger radar echoes compared to the easterly class. Additionally, the average speed of the easterly class has a tendency to decrease toward the end of the rainy season. The hot spot area with regard to CS severity has been identified as being in the southwest part of the study area.
topic convective systems
ground-based radar
hot spot analysis
classify moving rain systems
thailand
url https://www.tci-thaijo.org/index.php/easr/article/download/181046/155872/
work_keys_str_mv AT nattaponmahavik convectivesystemsobservedbygroundbasedradarduringtheseasonalmarchofasiansummermonsoonsinthemiddleofthailand
AT sarintiptantanee convectivesystemsobservedbygroundbasedradarduringtheseasonalmarchofasiansummermonsoonsinthemiddleofthailand
_version_ 1725148277486125056