Exploring the atmospheric chemistry of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> and assessing the maximum turnover number of ion-catalysed H<sub>2</sub>SO<sub>4</sub> formation

It has recently been demonstrated that the O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> ion forms in the atmosphere as a natural consequence of ionizing radiation. Here, we present a density functional theory-based study of the reactions of O<sub>2</...

Full description

Bibliographic Details
Main Authors: N. Bork, T. Kurtén, H. Vehkamäki
Format: Article
Language:English
Published: Copernicus Publications 2013-04-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/13/3695/2013/acp-13-3695-2013.pdf
id doaj-7486784d00f34ddca2ab81c143845391
record_format Article
spelling doaj-7486784d00f34ddca2ab81c1438453912020-11-24T23:46:32ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242013-04-011373695370310.5194/acp-13-3695-2013Exploring the atmospheric chemistry of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> and assessing the maximum turnover number of ion-catalysed H<sub>2</sub>SO<sub>4</sub> formationN. BorkT. KurténH. VehkamäkiIt has recently been demonstrated that the O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> ion forms in the atmosphere as a natural consequence of ionizing radiation. Here, we present a density functional theory-based study of the reactions of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> with O<sub>3</sub>. The most important reactions are (a) oxidation to O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> and (b) cluster decomposition into SO<sub>3</sub>, O<sub>2</sub> and O<sub>3</sub><sup>&minus;</sup>. The former reaction is highly exothermic, and the nascent O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> will rapidly decompose into SO<sub>4</sub><sup>&minus;</sup> and O<sub>2</sub>. If the origin of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> is SO<sub>2</sub> oxidation by O<sub>3</sub><sup>&minus;</sup>, the latter reaction closes a catalytic cycle wherein SO<sub>2</sub> is oxidized to SO<sub>3</sub>. The relative rate between the two major sinks for O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> is assessed, thereby providing a measure of the maximum turnover number of ion-catalysed SO<sub>2</sub> oxidation, i.e. how many SO<sub>2</sub> can be oxidized per free electron. The rate ratio between reactions (a) and (b) is significantly altered by the presence or absence of a single water molecule, but reaction (b) is in general much more probable. Although we are unable to assess the overall importance of this cycle in the real atmosphere due to the unknown influence of CO<sub>2</sub> and NO<sub>x</sub>, we roughly estimate that ion-induced catalysis may contribute with several percent of H<sub>2</sub>SO<sub>4</sub> levels in typical CO<sub>2</sub>-free and low NO<sub>x</sub> reaction chambers, e.g. the CLOUD chamber at CERN.http://www.atmos-chem-phys.net/13/3695/2013/acp-13-3695-2013.pdf
collection DOAJ
language English
format Article
sources DOAJ
author N. Bork
T. Kurtén
H. Vehkamäki
spellingShingle N. Bork
T. Kurtén
H. Vehkamäki
Exploring the atmospheric chemistry of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> and assessing the maximum turnover number of ion-catalysed H<sub>2</sub>SO<sub>4</sub> formation
Atmospheric Chemistry and Physics
author_facet N. Bork
T. Kurtén
H. Vehkamäki
author_sort N. Bork
title Exploring the atmospheric chemistry of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> and assessing the maximum turnover number of ion-catalysed H<sub>2</sub>SO<sub>4</sub> formation
title_short Exploring the atmospheric chemistry of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> and assessing the maximum turnover number of ion-catalysed H<sub>2</sub>SO<sub>4</sub> formation
title_full Exploring the atmospheric chemistry of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> and assessing the maximum turnover number of ion-catalysed H<sub>2</sub>SO<sub>4</sub> formation
title_fullStr Exploring the atmospheric chemistry of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> and assessing the maximum turnover number of ion-catalysed H<sub>2</sub>SO<sub>4</sub> formation
title_full_unstemmed Exploring the atmospheric chemistry of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> and assessing the maximum turnover number of ion-catalysed H<sub>2</sub>SO<sub>4</sub> formation
title_sort exploring the atmospheric chemistry of o<sub>2</sub>so<sub>3</sub><sup>&minus;</sup> and assessing the maximum turnover number of ion-catalysed h<sub>2</sub>so<sub>4</sub> formation
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2013-04-01
description It has recently been demonstrated that the O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> ion forms in the atmosphere as a natural consequence of ionizing radiation. Here, we present a density functional theory-based study of the reactions of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> with O<sub>3</sub>. The most important reactions are (a) oxidation to O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> and (b) cluster decomposition into SO<sub>3</sub>, O<sub>2</sub> and O<sub>3</sub><sup>&minus;</sup>. The former reaction is highly exothermic, and the nascent O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> will rapidly decompose into SO<sub>4</sub><sup>&minus;</sup> and O<sub>2</sub>. If the origin of O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> is SO<sub>2</sub> oxidation by O<sub>3</sub><sup>&minus;</sup>, the latter reaction closes a catalytic cycle wherein SO<sub>2</sub> is oxidized to SO<sub>3</sub>. The relative rate between the two major sinks for O<sub>2</sub>SO<sub>3</sub><sup>&minus;</sup> is assessed, thereby providing a measure of the maximum turnover number of ion-catalysed SO<sub>2</sub> oxidation, i.e. how many SO<sub>2</sub> can be oxidized per free electron. The rate ratio between reactions (a) and (b) is significantly altered by the presence or absence of a single water molecule, but reaction (b) is in general much more probable. Although we are unable to assess the overall importance of this cycle in the real atmosphere due to the unknown influence of CO<sub>2</sub> and NO<sub>x</sub>, we roughly estimate that ion-induced catalysis may contribute with several percent of H<sub>2</sub>SO<sub>4</sub> levels in typical CO<sub>2</sub>-free and low NO<sub>x</sub> reaction chambers, e.g. the CLOUD chamber at CERN.
url http://www.atmos-chem-phys.net/13/3695/2013/acp-13-3695-2013.pdf
work_keys_str_mv AT nbork exploringtheatmosphericchemistryofosub2subsosub3subsupminussupandassessingthemaximumturnovernumberofioncatalysedhsub2subsosub4subformation
AT tkurten exploringtheatmosphericchemistryofosub2subsosub3subsupminussupandassessingthemaximumturnovernumberofioncatalysedhsub2subsosub4subformation
AT hvehkamaki exploringtheatmosphericchemistryofosub2subsosub3subsupminussupandassessingthemaximumturnovernumberofioncatalysedhsub2subsosub4subformation
_version_ 1725493341715431424