Study on high quality surface finishing technology of pre-spinning nozzle in additive manufacturing

Through the simulation of abrasive flow in the inner cavity of the superalloy pre-spinning nozzle made by additive manufacturing, the special abrasive polishing tool is optimized and the surface polishing technology of the inner cavity of typical structure test pieceis studied. Through comparison of...

Full description

Bibliographic Details
Format: Article
Language:zho
Published: The Northwestern Polytechnical University 2021-04-01
Series:Xibei Gongye Daxue Xuebao
Subjects:
Online Access:https://www.jnwpu.org/articles/jnwpu/full_html/2021/02/jnwpu2021392p334/jnwpu2021392p334.html
Description
Summary:Through the simulation of abrasive flow in the inner cavity of the superalloy pre-spinning nozzle made by additive manufacturing, the special abrasive polishing tool is optimized and the surface polishing technology of the inner cavity of typical structure test pieceis studied. Through comparison of the surface morphology before and after polishing, it can be concluded that the abrasive flow has a considerable removal effect on the powder sticking effect, spheroidizing effect, step effect, slag hanging phenomenon and residual support on the surface of parts, but it has a limited effect on the surface pit of the substrate. After polishing, the surface roughness of the inner cavity of parts decreasea from Ra 3.1397 μm to Ra 0.5805 μm, and the surface roughness of blade position decreases from Ra 4.8473 μm to Ra 0.3606 μm. Through the range analysis, it is found that the effect intensity of the processing parameters on the surface roughness of the parts is in order of the processing time, processing pressure and abrasive particle size.
ISSN:1000-2758
2609-7125