Performance analysis of different PWM techniques on V/f-based speed control with adjustable boost voltage application for induction motors

This paper presents a comparative study and a method to improve Volt-Hertz (V/f) based speed control of Induction Motors (IMs). For this purpose, Sinusoidal Pulse Width Modulation (SPWM) and space vector pulse width modulation (SVPWM) techniques are investigated and evaluated, especially from the po...

Full description

Bibliographic Details
Main Author: Selami Kesler
Format: Article
Language:English
Published: Pamukkale University 2018-10-01
Series:Pamukkale University Journal of Engineering Sciences
Subjects:
Online Access:https://dergipark.org.tr/tr/pub/pajes/issue/39683/469346
Description
Summary:This paper presents a comparative study and a method to improve Volt-Hertz (V/f) based speed control of Induction Motors (IMs). For this purpose, Sinusoidal Pulse Width Modulation (SPWM) and space vector pulse width modulation (SVPWM) techniques are investigated and evaluated, especially from the point of their control performance on the V/f-based control for three-phase IMs working at different load and speed conditions. From this aspect, it is a different study from the literature. Steady and transient effects of both techniques on the above mentioned control methods are analyzed for several case studies. Afterwards, adjustable boost voltage application with modified reference commands technique is proposed for both PWM methods in order to improve start-up performance. All investigations for both PWM models are carried out under the same conditions. Although SVPWM technique gives more effective results in many cases, the proposed method provides noticeable improvements on SPWM-based applications from point of performance on the control method. As a novelty of this study, it is shown that, the bad performance of the control method at low frequency in SPWM application, which has lower computational burden for low cost microcontroller, can be improved by applying adjustable boost voltage along with modified references that are proportional to the DC bus current.
ISSN:1300-7009
2147-5881