Améliorer la performance en SST : les résultats vs les prédicteurs
Despite their initial usefulness, traditional OHS measures (e.g., frequency rate, severity rate) are considered poor, inappropriate and even counterproductive indicators for improving companies’ OHS performance. This article instead proposes the measuring of predictive variables that fall within a h...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST)
2005-05-01
|
Series: | Perspectives Interdisciplinaires sur le Travail et la Santé |
Subjects: | |
Online Access: | http://journals.openedition.org/pistes/3214 |
id |
doaj-74382c128bdf47da8e26a5032459c8d0 |
---|---|
record_format |
Article |
spelling |
doaj-74382c128bdf47da8e26a5032459c8d02020-11-25T01:06:37ZengInstitut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST)Perspectives Interdisciplinaires sur le Travail et la Santé1481-93842005-05-017210.4000/pistes.3214Améliorer la performance en SST : les résultats vs les prédicteursMario RoyLise DesmaraisJean CadieuxDespite their initial usefulness, traditional OHS measures (e.g., frequency rate, severity rate) are considered poor, inappropriate and even counterproductive indicators for improving companies’ OHS performance. This article instead proposes the measuring of predictive variables that fall within a hierarchical model of OHS concerns based on a learning- instead of a performance-based philosophy. The developed diagnostic instrument is a self-administered questionnaire covering predictive variables likely to have an impact on OHS results. The interest raised by the questionnaire in environments that have used it justifies further work to test the instrument’s scientific validity.http://journals.openedition.org/pistes/3214performancemeasurepredictorresultslearning |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mario Roy Lise Desmarais Jean Cadieux |
spellingShingle |
Mario Roy Lise Desmarais Jean Cadieux Améliorer la performance en SST : les résultats vs les prédicteurs Perspectives Interdisciplinaires sur le Travail et la Santé performance measure predictor results learning |
author_facet |
Mario Roy Lise Desmarais Jean Cadieux |
author_sort |
Mario Roy |
title |
Améliorer la performance en SST : les résultats vs les prédicteurs |
title_short |
Améliorer la performance en SST : les résultats vs les prédicteurs |
title_full |
Améliorer la performance en SST : les résultats vs les prédicteurs |
title_fullStr |
Améliorer la performance en SST : les résultats vs les prédicteurs |
title_full_unstemmed |
Améliorer la performance en SST : les résultats vs les prédicteurs |
title_sort |
améliorer la performance en sst : les résultats vs les prédicteurs |
publisher |
Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST) |
series |
Perspectives Interdisciplinaires sur le Travail et la Santé |
issn |
1481-9384 |
publishDate |
2005-05-01 |
description |
Despite their initial usefulness, traditional OHS measures (e.g., frequency rate, severity rate) are considered poor, inappropriate and even counterproductive indicators for improving companies’ OHS performance. This article instead proposes the measuring of predictive variables that fall within a hierarchical model of OHS concerns based on a learning- instead of a performance-based philosophy. The developed diagnostic instrument is a self-administered questionnaire covering predictive variables likely to have an impact on OHS results. The interest raised by the questionnaire in environments that have used it justifies further work to test the instrument’s scientific validity. |
topic |
performance measure predictor results learning |
url |
http://journals.openedition.org/pistes/3214 |
work_keys_str_mv |
AT marioroy ameliorerlaperformanceensstlesresultatsvslespredicteurs AT lisedesmarais ameliorerlaperformanceensstlesresultatsvslespredicteurs AT jeancadieux ameliorerlaperformanceensstlesresultatsvslespredicteurs |
_version_ |
1725189203992510464 |