Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties

Bi2Te3 nanowires are promising candidates for thermoelectric applications. Vapor-liquid-solid growth of these nanowires is straightforward, but the traditional Au-catalyzed method is expected to lead to Au contamination and subsequently crystal defects. Here, we present a comparison of the Au-cataly...

Full description

Bibliographic Details
Main Authors: P. Schönherr, D. Kojda, V. Srot, S. F. Fischer, P. A. van Aken, T. Hesjedal
Format: Article
Language:English
Published: AIP Publishing LLC 2017-08-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/1.4986524
id doaj-742e53e1682a460ebbbb52f4b44ab37f
record_format Article
spelling doaj-742e53e1682a460ebbbb52f4b44ab37f2020-11-24T21:35:39ZengAIP Publishing LLCAPL Materials2166-532X2017-08-0158086110086110-610.1063/1.4986524011708APMPerfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric propertiesP. Schönherr0D. Kojda1V. Srot2S. F. Fischer3P. A. van Aken4T. Hesjedal5Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United KingdomHumboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, GermanyStuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 3, 70569 Stuttgart, GermanyHumboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, GermanyStuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 3, 70569 Stuttgart, GermanyClarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United KingdomBi2Te3 nanowires are promising candidates for thermoelectric applications. Vapor-liquid-solid growth of these nanowires is straightforward, but the traditional Au-catalyzed method is expected to lead to Au contamination and subsequently crystal defects. Here, we present a comparison of the Au-catalyzed growth method with an alternative method using TiO2. We observe that the latter approach results in perfect quintuple layer nanowires, whilst using Au leads to mixed quintuple and septuple layer structures. Despite these differences, we surprisingly find only a negligible effect on their thermoelectric properties, namely conductivity and Seebeck coefficient. This result is relevant for the further optimization and engineering of thermoelectric nanomaterials for device applications.http://dx.doi.org/10.1063/1.4986524
collection DOAJ
language English
format Article
sources DOAJ
author P. Schönherr
D. Kojda
V. Srot
S. F. Fischer
P. A. van Aken
T. Hesjedal
spellingShingle P. Schönherr
D. Kojda
V. Srot
S. F. Fischer
P. A. van Aken
T. Hesjedal
Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties
APL Materials
author_facet P. Schönherr
D. Kojda
V. Srot
S. F. Fischer
P. A. van Aken
T. Hesjedal
author_sort P. Schönherr
title Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties
title_short Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties
title_full Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties
title_fullStr Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties
title_full_unstemmed Perfect quintuple layer Bi2Te3 nanowires: Growth and thermoelectric properties
title_sort perfect quintuple layer bi2te3 nanowires: growth and thermoelectric properties
publisher AIP Publishing LLC
series APL Materials
issn 2166-532X
publishDate 2017-08-01
description Bi2Te3 nanowires are promising candidates for thermoelectric applications. Vapor-liquid-solid growth of these nanowires is straightforward, but the traditional Au-catalyzed method is expected to lead to Au contamination and subsequently crystal defects. Here, we present a comparison of the Au-catalyzed growth method with an alternative method using TiO2. We observe that the latter approach results in perfect quintuple layer nanowires, whilst using Au leads to mixed quintuple and septuple layer structures. Despite these differences, we surprisingly find only a negligible effect on their thermoelectric properties, namely conductivity and Seebeck coefficient. This result is relevant for the further optimization and engineering of thermoelectric nanomaterials for device applications.
url http://dx.doi.org/10.1063/1.4986524
work_keys_str_mv AT pschonherr perfectquintuplelayerbi2te3nanowiresgrowthandthermoelectricproperties
AT dkojda perfectquintuplelayerbi2te3nanowiresgrowthandthermoelectricproperties
AT vsrot perfectquintuplelayerbi2te3nanowiresgrowthandthermoelectricproperties
AT sffischer perfectquintuplelayerbi2te3nanowiresgrowthandthermoelectricproperties
AT pavanaken perfectquintuplelayerbi2te3nanowiresgrowthandthermoelectricproperties
AT thesjedal perfectquintuplelayerbi2te3nanowiresgrowthandthermoelectricproperties
_version_ 1725944612243111936