Towards the maturation and characterization of smooth muscle cells derived from human embryonic stem cells.

In this study we demonstrate that CD34(+) cells derived from human embryonic stem cells (hESCs) have higher smooth muscle cell (SMC) potential than CD34(-) cells. We report that from all inductive signals tested, retinoic acid (RA) and platelet derived growth factor (PDGF(BB)) are the most effective...

Full description

Bibliographic Details
Main Authors: Helena Vazão, Ricardo Pires das Neves, Mário Grãos, Lino Ferreira
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3053392?pdf=render
Description
Summary:In this study we demonstrate that CD34(+) cells derived from human embryonic stem cells (hESCs) have higher smooth muscle cell (SMC) potential than CD34(-) cells. We report that from all inductive signals tested, retinoic acid (RA) and platelet derived growth factor (PDGF(BB)) are the most effective agents in guiding the differentiation of CD34(+) cells into smooth muscle progenitor cells (SMPCs) characterized by the expression of SMC genes and proteins, secretion of SMC-related cytokines, contraction in response to depolarization agents and vasoactive peptides and expression of SMC-related genes in a 3D environment. These cells are also characterized by a low organization of the contractile proteins and the contractility response is mediated by Ca(2+), which involves the activation of Rho A/Rho kinase- and Ca(2+)/calmodulin (CaM)/myosin light chain kinase (MLCK)-dependent pathways. We further show that SMPCs obtained from the differentiation of CD34(+) cells with RA, but not with PDGF(BB,) can be maturated in medium supplemented with endothelin-1 showing at the end individualized contractile filaments. Overall the hESC-derived SMCs presented in this work might be an unlimited source of SMCs for tissue engineering and regenerative medicine.
ISSN:1932-6203