Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease.

Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of...

Full description

Bibliographic Details
Main Authors: Nelly M Cruz, Yang Yuan, Barrett D Leehy, Rinku Baid, Uday Kompella, Margaret M DeAngelis, Pascal Escher, Neena B Haider
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3909326?pdf=render
id doaj-741461758d294881b8e6a4309c5ff2c2
record_format Article
spelling doaj-741461758d294881b8e6a4309c5ff2c22020-11-25T01:43:05ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0191e8794210.1371/journal.pone.0087942Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease.Nelly M CruzYang YuanBarrett D LeehyRinku BaidUday KompellaMargaret M DeAngelisPascal EscherNeena B HaiderNuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα) rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.http://europepmc.org/articles/PMC3909326?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Nelly M Cruz
Yang Yuan
Barrett D Leehy
Rinku Baid
Uday Kompella
Margaret M DeAngelis
Pascal Escher
Neena B Haider
spellingShingle Nelly M Cruz
Yang Yuan
Barrett D Leehy
Rinku Baid
Uday Kompella
Margaret M DeAngelis
Pascal Escher
Neena B Haider
Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease.
PLoS ONE
author_facet Nelly M Cruz
Yang Yuan
Barrett D Leehy
Rinku Baid
Uday Kompella
Margaret M DeAngelis
Pascal Escher
Neena B Haider
author_sort Nelly M Cruz
title Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease.
title_short Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease.
title_full Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease.
title_fullStr Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease.
title_full_unstemmed Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease.
title_sort modifier genes as therapeutics: the nuclear hormone receptor rev erb alpha (nr1d1) rescues nr2e3 associated retinal disease.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2014-01-01
description Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα) rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.
url http://europepmc.org/articles/PMC3909326?pdf=render
work_keys_str_mv AT nellymcruz modifiergenesastherapeuticsthenuclearhormonereceptorreverbalphanr1d1rescuesnr2e3associatedretinaldisease
AT yangyuan modifiergenesastherapeuticsthenuclearhormonereceptorreverbalphanr1d1rescuesnr2e3associatedretinaldisease
AT barrettdleehy modifiergenesastherapeuticsthenuclearhormonereceptorreverbalphanr1d1rescuesnr2e3associatedretinaldisease
AT rinkubaid modifiergenesastherapeuticsthenuclearhormonereceptorreverbalphanr1d1rescuesnr2e3associatedretinaldisease
AT udaykompella modifiergenesastherapeuticsthenuclearhormonereceptorreverbalphanr1d1rescuesnr2e3associatedretinaldisease
AT margaretmdeangelis modifiergenesastherapeuticsthenuclearhormonereceptorreverbalphanr1d1rescuesnr2e3associatedretinaldisease
AT pascalescher modifiergenesastherapeuticsthenuclearhormonereceptorreverbalphanr1d1rescuesnr2e3associatedretinaldisease
AT neenabhaider modifiergenesastherapeuticsthenuclearhormonereceptorreverbalphanr1d1rescuesnr2e3associatedretinaldisease
_version_ 1725033432026710016