Immobilization Techniques for Microarray: Challenges and Applications

The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials) on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers...

Full description

Bibliographic Details
Main Authors: Satish Balasaheb Nimse, Keumsoo Song, Mukesh Digambar Sonawane, Danishmalik Rafiq Sayyed, Taisun Kim
Format: Article
Language:English
Published: MDPI AG 2014-11-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/14/12/22208
Description
Summary:The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials) on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers fail to position the molecules on the nanometer scale to produce highly organized monolayers on the surface. The present article elaborates different techniques for the immobilization of the biomolecules on the surface to produce microarrays and their diagnostic applications. The advantages and the drawbacks of various methods are compared. This article also sheds light on the applications of the different technologies for the detection and discrimination of viral/bacterial genotypes and the detection of the biomarkers. A brief survey with 115 references covering the last 10 years on the biological applications of microarrays in various fields is also provided.
ISSN:1424-8220