DENOISING OF 3D POINT CLOUDS

A method to remove random errors from 3D point clouds is proposed. It is based on the estimation of a local geometric descriptor of each point. For mobile mapping LiDAR and airborne LiDAR, a combined standard mesurement uncertainty of the LiDAR system may supplement a geometric approach. Our method...

Full description

Bibliographic Details
Main Authors: E. Mugner, N. Seube
Format: Article
Language:English
Published: Copernicus Publications 2019-11-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W17/217/2019/isprs-archives-XLII-2-W17-217-2019.pdf
Description
Summary:A method to remove random errors from 3D point clouds is proposed. It is based on the estimation of a local geometric descriptor of each point. For mobile mapping LiDAR and airborne LiDAR, a combined standard mesurement uncertainty of the LiDAR system may supplement a geometric approach. Our method can be applied to any point cloud, acquired by a fixed, a mobile or an airborne LiDAR system. We present the principle of the method and some results from various LiDAR system mounted on UAVs. A comparison of a low-cost LiDAR system and a high-grade LiDAR system is performed on the same area, showing the benefits of applying our denoising algorithm to UAV LiDAR data. We also present the impact of denoising as a pre-processing tool for ground classification applications. Finaly, we also show some application of our denoising algorithm to dense point clouds produced by a photogrammetry software.
ISSN:1682-1750
2194-9034