MAN-MADE OBJECT EXTRACTION FROM REMOTE SENSING IMAGERY BY GRAPH-BASED MANIFOLD RANKING
The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-m...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-04-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3/511/2018/isprs-archives-XLII-3-511-2018.pdf |
id |
doaj-73f450f62427427b8268cd9401eb9787 |
---|---|
record_format |
Article |
spelling |
doaj-73f450f62427427b8268cd9401eb97872020-11-24T21:29:01ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342018-04-01XLII-351151610.5194/isprs-archives-XLII-3-511-2018MAN-MADE OBJECT EXTRACTION FROM REMOTE SENSING IMAGERY BY GRAPH-BASED MANIFOLD RANKINGY. He0X. Wang1X. Y. Hu2S. H. Liu3Satellite Surveying and Mapping Application Center, National Administration of Surveying, Mapping and Geo-information, Beijing, P.R. ChinaSatellite Surveying and Mapping Application Center, National Administration of Surveying, Mapping and Geo-information, Beijing, P.R. ChinaCollaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan, P.R. ChinaSatellite Surveying and Mapping Application Center, National Administration of Surveying, Mapping and Geo-information, Beijing, P.R. ChinaThe automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3/511/2018/isprs-archives-XLII-3-511-2018.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Y. He X. Wang X. Y. Hu S. H. Liu |
spellingShingle |
Y. He X. Wang X. Y. Hu S. H. Liu MAN-MADE OBJECT EXTRACTION FROM REMOTE SENSING IMAGERY BY GRAPH-BASED MANIFOLD RANKING The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
Y. He X. Wang X. Y. Hu S. H. Liu |
author_sort |
Y. He |
title |
MAN-MADE OBJECT EXTRACTION FROM REMOTE SENSING IMAGERY BY GRAPH-BASED MANIFOLD RANKING |
title_short |
MAN-MADE OBJECT EXTRACTION FROM REMOTE SENSING IMAGERY BY GRAPH-BASED MANIFOLD RANKING |
title_full |
MAN-MADE OBJECT EXTRACTION FROM REMOTE SENSING IMAGERY BY GRAPH-BASED MANIFOLD RANKING |
title_fullStr |
MAN-MADE OBJECT EXTRACTION FROM REMOTE SENSING IMAGERY BY GRAPH-BASED MANIFOLD RANKING |
title_full_unstemmed |
MAN-MADE OBJECT EXTRACTION FROM REMOTE SENSING IMAGERY BY GRAPH-BASED MANIFOLD RANKING |
title_sort |
man-made object extraction from remote sensing imagery by graph-based manifold ranking |
publisher |
Copernicus Publications |
series |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
1682-1750 2194-9034 |
publishDate |
2018-04-01 |
description |
The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate. |
url |
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3/511/2018/isprs-archives-XLII-3-511-2018.pdf |
work_keys_str_mv |
AT yhe manmadeobjectextractionfromremotesensingimagerybygraphbasedmanifoldranking AT xwang manmadeobjectextractionfromremotesensingimagerybygraphbasedmanifoldranking AT xyhu manmadeobjectextractionfromremotesensingimagerybygraphbasedmanifoldranking AT shliu manmadeobjectextractionfromremotesensingimagerybygraphbasedmanifoldranking |
_version_ |
1725967906846539776 |