On finite C-tidy groups

A group G is said to be a C-tidy group if for every element x € G K(G), the set Cyc(x)={y € G | is cyclic} is a cyclic subgroup of G, where K(G) is the intersection of all the Cyc(x) in G. In this short note we determine the structure of finite C-tidy groups.

Bibliographic Details
Main Author: Sekhar Jyoti Baishya
Format: Article
Language:English
Published: University of Isfahan 2013-12-01
Series:International Journal of Group Theory
Subjects:
Online Access:http://www.theoryofgroups.ir/?_action=showPDF&article=2838&_ob=51183452fe28ea3b47d017d831342fb6&fileName=full_text.pdf.
id doaj-73f202c23f0c4effbabe53f1b6bd7d55
record_format Article
spelling doaj-73f202c23f0c4effbabe53f1b6bd7d552020-11-25T01:07:31ZengUniversity of IsfahanInternational Journal of Group Theory2251-76502251-76692013-12-01243941On finite C-tidy groupsSekhar Jyoti BaishyaA group G is said to be a C-tidy group if for every element x € G K(G), the set Cyc(x)={y € G | is cyclic} is a cyclic subgroup of G, where K(G) is the intersection of all the Cyc(x) in G. In this short note we determine the structure of finite C-tidy groups.http://www.theoryofgroups.ir/?_action=showPDF&article=2838&_ob=51183452fe28ea3b47d017d831342fb6&fileName=full_text.pdf.Finite groupscyclicizersC-tidy groups
collection DOAJ
language English
format Article
sources DOAJ
author Sekhar Jyoti Baishya
spellingShingle Sekhar Jyoti Baishya
On finite C-tidy groups
International Journal of Group Theory
Finite groups
cyclicizers
C-tidy groups
author_facet Sekhar Jyoti Baishya
author_sort Sekhar Jyoti Baishya
title On finite C-tidy groups
title_short On finite C-tidy groups
title_full On finite C-tidy groups
title_fullStr On finite C-tidy groups
title_full_unstemmed On finite C-tidy groups
title_sort on finite c-tidy groups
publisher University of Isfahan
series International Journal of Group Theory
issn 2251-7650
2251-7669
publishDate 2013-12-01
description A group G is said to be a C-tidy group if for every element x € G K(G), the set Cyc(x)={y € G | is cyclic} is a cyclic subgroup of G, where K(G) is the intersection of all the Cyc(x) in G. In this short note we determine the structure of finite C-tidy groups.
topic Finite groups
cyclicizers
C-tidy groups
url http://www.theoryofgroups.ir/?_action=showPDF&article=2838&_ob=51183452fe28ea3b47d017d831342fb6&fileName=full_text.pdf.
work_keys_str_mv AT sekharjyotibaishya onfinitectidygroups
_version_ 1725186787793436672