On finite C-tidy groups
A group G is said to be a C-tidy group if for every element x € G K(G), the set Cyc(x)={y € G | is cyclic} is a cyclic subgroup of G, where K(G) is the intersection of all the Cyc(x) in G. In this short note we determine the structure of finite C-tidy groups.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Isfahan
2013-12-01
|
Series: | International Journal of Group Theory |
Subjects: | |
Online Access: | http://www.theoryofgroups.ir/?_action=showPDF&article=2838&_ob=51183452fe28ea3b47d017d831342fb6&fileName=full_text.pdf. |
id |
doaj-73f202c23f0c4effbabe53f1b6bd7d55 |
---|---|
record_format |
Article |
spelling |
doaj-73f202c23f0c4effbabe53f1b6bd7d552020-11-25T01:07:31ZengUniversity of IsfahanInternational Journal of Group Theory2251-76502251-76692013-12-01243941On finite C-tidy groupsSekhar Jyoti BaishyaA group G is said to be a C-tidy group if for every element x € G K(G), the set Cyc(x)={y € G | is cyclic} is a cyclic subgroup of G, where K(G) is the intersection of all the Cyc(x) in G. In this short note we determine the structure of finite C-tidy groups.http://www.theoryofgroups.ir/?_action=showPDF&article=2838&_ob=51183452fe28ea3b47d017d831342fb6&fileName=full_text.pdf.Finite groupscyclicizersC-tidy groups |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sekhar Jyoti Baishya |
spellingShingle |
Sekhar Jyoti Baishya On finite C-tidy groups International Journal of Group Theory Finite groups cyclicizers C-tidy groups |
author_facet |
Sekhar Jyoti Baishya |
author_sort |
Sekhar Jyoti Baishya |
title |
On finite C-tidy groups |
title_short |
On finite C-tidy groups |
title_full |
On finite C-tidy groups |
title_fullStr |
On finite C-tidy groups |
title_full_unstemmed |
On finite C-tidy groups |
title_sort |
on finite c-tidy groups |
publisher |
University of Isfahan |
series |
International Journal of Group Theory |
issn |
2251-7650 2251-7669 |
publishDate |
2013-12-01 |
description |
A group G is said to be a C-tidy group if for every element x € G K(G), the set Cyc(x)={y € G | is cyclic} is a cyclic subgroup of G, where K(G) is the intersection of all the Cyc(x) in G. In this short note we determine the structure of finite C-tidy groups. |
topic |
Finite groups cyclicizers C-tidy groups |
url |
http://www.theoryofgroups.ir/?_action=showPDF&article=2838&_ob=51183452fe28ea3b47d017d831342fb6&fileName=full_text.pdf. |
work_keys_str_mv |
AT sekharjyotibaishya onfinitectidygroups |
_version_ |
1725186787793436672 |