[Se(CH2C(O)CH3)3][B12F11NH3]: The first selenium cation with three β-ketone substituents

The reaction of [Se8][B12F11NH3]2 with acetone and subsequent crystallization from acetone/diethyl ether yielded the selenium cation [Se(CH2C(O)CH3)3]+ as a by-product, which is stabilized by the weakly coordinating undecafluorinated anion [B12F11NH3]−. While attempting to crystallize pure [Se8][B12...

Full description

Bibliographic Details
Main Authors: Carsten Jenne, Marc C. Nierstenhöfer
Format: Article
Language:English
Published: International Union of Crystallography 2020-02-01
Series:Acta Crystallographica Section E: Crystallographic Communications
Subjects:
Online Access:http://scripts.iucr.org/cgi-bin/paper?S2056989020000481
Description
Summary:The reaction of [Se8][B12F11NH3]2 with acetone and subsequent crystallization from acetone/diethyl ether yielded the selenium cation [Se(CH2C(O)CH3)3]+ as a by-product, which is stabilized by the weakly coordinating undecafluorinated anion [B12F11NH3]−. While attempting to crystallize pure [Se8][B12F11NH3]2, the structure of the isolated product, namely, tris(2-oxopropyl)selenium 1-ammonioundecafluorododecaborate, was surprising. The cation [Se(CH2C(O)CH3)3]+ represents the first example for a cationic selenium compound with three ketone functional groups located in the β-position with respect to the selenium atom. The cation possesses almost trigonal–pyramidal C3 symmetry and forms hydrogen bonds to the ammonio group of the anion.
ISSN:2056-9890