Mitogen-activated protein kinases and NFκB are involved in SP-A-enhanced responses of macrophages to mycobacteria
<p>Abstract</p> <p>Background</p> <p>Surfactant protein A (SP-A) is a C-type lectin involved in surfactant homeostasis as well as host defense in the lung. We have recently demonstrated that SP-A enhances the killing of bacillus Calmette-Guerin (BCG) by rat macrophages...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2009-07-01
|
Series: | Respiratory Research |
Online Access: | http://respiratory-research.com/content/10/1/60 |
id |
doaj-73d32fe8032744648f91063af599ec40 |
---|---|
record_format |
Article |
spelling |
doaj-73d32fe8032744648f91063af599ec402020-11-25T02:45:26ZengBMCRespiratory Research1465-99212009-07-011016010.1186/1465-9921-10-60Mitogen-activated protein kinases and NFκB are involved in SP-A-enhanced responses of macrophages to mycobacteriaVigerust David JLopez Joseph PShepherd Virginia L<p>Abstract</p> <p>Background</p> <p>Surfactant protein A (SP-A) is a C-type lectin involved in surfactant homeostasis as well as host defense in the lung. We have recently demonstrated that SP-A enhances the killing of bacillus Calmette-Guerin (BCG) by rat macrophages through a nitric oxide-dependent pathway. In the current study we have investigated the role of tyrosine kinases and the downstream mitogen-activated protein kinase (MAPK) family, and the transcription factor NFκB in mediating the enhanced signaling in response to BCG in the presence of SP-A.</p> <p>Methods</p> <p>Human SP-A was prepared from alveolar proteinosis fluid, and primary macrophages were obtained by maturation of cells from whole rat bone marrow. BCG-SP-A complexes were routinely prepared by incubation of a ratio of 20 μg of SP-A to 5 × 10<sup>5 </sup>BCG for 30 min at 37°C. Cells were incubated with PBS, SP-A, BCG, or SP-A-BCG complexes for the times indicated. BCG killing was assessed using a 3H-uracil incorporation assay. Phosphorylated protein levels, enzyme assays, and secreted mediator assays were conducted using standard immunoblot and biochemical methods as outlined.</p> <p>Results</p> <p>Involvement of tyrosine kinases was demonstrated by herbimycin A-mediated inhibition of the SP-A-enhanced nitric oxide production and BCG killing. Following infection of macrophages with BCG, the MAPK family members ERK1 and ERK2 were activated as evidence by increased tyrosine phosphorylation and enzymatic activity, and this activation was enhanced when the BCG were opsonized with SP-A. An inhibitor of upstream kinases required for ERK activation inhibited BCG- and SP-A-BCG-enhanced production of nitric oxide by approximately 35%. Macrophages isolated from transgenic mice expressing a NFκB-responsive luciferase gene showed increased luciferase activity following infection with BCG, and this activity was enhanced two-fold in the presence of SP-A. Finally, lactacystin, an inhibitor of IκB degradation, reduced BCG- and SP-A-BCG-induced nitric oxide production by 60% and 80% respectively.</p> <p>Conclusion</p> <p>These results demonstrate that BCG and SP-A-BCG ingestion by macrophages is accompanied by activation of signaling pathways involving the MAP kinase pathway and NFκB.</p> http://respiratory-research.com/content/10/1/60 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vigerust David J Lopez Joseph P Shepherd Virginia L |
spellingShingle |
Vigerust David J Lopez Joseph P Shepherd Virginia L Mitogen-activated protein kinases and NFκB are involved in SP-A-enhanced responses of macrophages to mycobacteria Respiratory Research |
author_facet |
Vigerust David J Lopez Joseph P Shepherd Virginia L |
author_sort |
Vigerust David J |
title |
Mitogen-activated protein kinases and NFκB are involved in SP-A-enhanced responses of macrophages to mycobacteria |
title_short |
Mitogen-activated protein kinases and NFκB are involved in SP-A-enhanced responses of macrophages to mycobacteria |
title_full |
Mitogen-activated protein kinases and NFκB are involved in SP-A-enhanced responses of macrophages to mycobacteria |
title_fullStr |
Mitogen-activated protein kinases and NFκB are involved in SP-A-enhanced responses of macrophages to mycobacteria |
title_full_unstemmed |
Mitogen-activated protein kinases and NFκB are involved in SP-A-enhanced responses of macrophages to mycobacteria |
title_sort |
mitogen-activated protein kinases and nfκb are involved in sp-a-enhanced responses of macrophages to mycobacteria |
publisher |
BMC |
series |
Respiratory Research |
issn |
1465-9921 |
publishDate |
2009-07-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Surfactant protein A (SP-A) is a C-type lectin involved in surfactant homeostasis as well as host defense in the lung. We have recently demonstrated that SP-A enhances the killing of bacillus Calmette-Guerin (BCG) by rat macrophages through a nitric oxide-dependent pathway. In the current study we have investigated the role of tyrosine kinases and the downstream mitogen-activated protein kinase (MAPK) family, and the transcription factor NFκB in mediating the enhanced signaling in response to BCG in the presence of SP-A.</p> <p>Methods</p> <p>Human SP-A was prepared from alveolar proteinosis fluid, and primary macrophages were obtained by maturation of cells from whole rat bone marrow. BCG-SP-A complexes were routinely prepared by incubation of a ratio of 20 μg of SP-A to 5 × 10<sup>5 </sup>BCG for 30 min at 37°C. Cells were incubated with PBS, SP-A, BCG, or SP-A-BCG complexes for the times indicated. BCG killing was assessed using a 3H-uracil incorporation assay. Phosphorylated protein levels, enzyme assays, and secreted mediator assays were conducted using standard immunoblot and biochemical methods as outlined.</p> <p>Results</p> <p>Involvement of tyrosine kinases was demonstrated by herbimycin A-mediated inhibition of the SP-A-enhanced nitric oxide production and BCG killing. Following infection of macrophages with BCG, the MAPK family members ERK1 and ERK2 were activated as evidence by increased tyrosine phosphorylation and enzymatic activity, and this activation was enhanced when the BCG were opsonized with SP-A. An inhibitor of upstream kinases required for ERK activation inhibited BCG- and SP-A-BCG-enhanced production of nitric oxide by approximately 35%. Macrophages isolated from transgenic mice expressing a NFκB-responsive luciferase gene showed increased luciferase activity following infection with BCG, and this activity was enhanced two-fold in the presence of SP-A. Finally, lactacystin, an inhibitor of IκB degradation, reduced BCG- and SP-A-BCG-induced nitric oxide production by 60% and 80% respectively.</p> <p>Conclusion</p> <p>These results demonstrate that BCG and SP-A-BCG ingestion by macrophages is accompanied by activation of signaling pathways involving the MAP kinase pathway and NFκB.</p> |
url |
http://respiratory-research.com/content/10/1/60 |
work_keys_str_mv |
AT vigerustdavidj mitogenactivatedproteinkinasesandnfkbareinvolvedinspaenhancedresponsesofmacrophagestomycobacteria AT lopezjosephp mitogenactivatedproteinkinasesandnfkbareinvolvedinspaenhancedresponsesofmacrophagestomycobacteria AT shepherdvirginial mitogenactivatedproteinkinasesandnfkbareinvolvedinspaenhancedresponsesofmacrophagestomycobacteria |
_version_ |
1724762846408998912 |