Biobased Polystyrene Foam-like Material from Crosslinked Cassava Starch and Nanocellulose from Sugarcane Bagasse

This research aimed to study the effect of lignin, natural rubber latex (NRL), nanocellulose, and talc on production of biobased foam using cassava starch as matrix. Comparison study on lignin extraction from sugarcane bagasse (SCB) for different types of base (KOH and NaOH), concentration (10 %w/w...

Full description

Bibliographic Details
Main Authors: Parichat Phaodee, Neungruthai Tangjaroensirirat, Chularat Sakdaronnarong
Format: Article
Language:English
Published: North Carolina State University 2014-11-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_1_348_Phaodee_Biobased_Polystyrene_Cassava_Starch
Description
Summary:This research aimed to study the effect of lignin, natural rubber latex (NRL), nanocellulose, and talc on production of biobased foam using cassava starch as matrix. Comparison study on lignin extraction from sugarcane bagasse (SCB) for different types of base (KOH and NaOH), concentration (10 %w/w and 40 %w/w), and temperatures (60 C for 3 h and 120 C for 1 h) was performed. The most suitable isolation condition giving the highest yield of lignin and lowest hemicellulose contamination was 40 %KOH at 120 oC for 1 h. A mechanical method was superior to a chemical method for cellulose size reduction owing to more appropriate size distribution and uniformity of nanocellulose. The most favorable proportion of foam contained 20% nanocellulose, 3% talc, 0.1% NRL, 38.5% water, and 76.9% crosslinked cassava starch. These conditions resulted in favorable flexural strength, modulus, and percentage of elongation, analogous to polystyrene foam. An appropriate amount of added lignin increased the elasticity of biofoam.
ISSN:1930-2126
1930-2126