Phage-DMS: A Comprehensive Method for Fine Mapping of Antibody Epitopes

Summary: Understanding the antibody response is critical to developing vaccine and antibody-based therapies and has inspired the recent development of new methods to isolate antibodies. Methods to define the antibody-antigen interactions that determine specificity or allow escape have not kept pace....

Full description

Bibliographic Details
Main Authors: Meghan E. Garrett, Hannah L. Itell, Katharine H.D. Crawford, Ryan Basom, Jesse D. Bloom, Julie Overbaugh
Format: Article
Language:English
Published: Elsevier 2020-10-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004220308142
Description
Summary:Summary: Understanding the antibody response is critical to developing vaccine and antibody-based therapies and has inspired the recent development of new methods to isolate antibodies. Methods to define the antibody-antigen interactions that determine specificity or allow escape have not kept pace. We developed Phage-DMS, a method that combines two powerful approaches—immunoprecipitation of phage peptide libraries and deep mutational scanning (DMS)—to enable high-throughput fine mapping of antibody epitopes. As an example, we designed sequences encoding all possible amino acid variants of HIV Envelope to create phage libraries. Using Phage-DMS, we identified sites of escape predicted using other approaches for four well-characterized HIV monoclonal antibodies with known linear epitopes. In some cases, the results of Phage-DMS refined the epitope beyond what was determined in previous studies. This method has the potential to rapidly and comprehensively screen many antibodies in a single experiment to define sites essential for binding interactions.
ISSN:2589-0042