Hydrochemical Zoning and Chemical Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using Water Chemical and Environmental Isotope Data

A comprehensive hydrogeological understanding of the deep Upper Jurassic carbonate aquifer, which represents an important geothermal reservoir in the South German Molasse Basin (SGMB), is crucial for improved and sustainable groundwater resource management. Water chemical data and environmental isot...

Full description

Bibliographic Details
Main Authors: Florian Heine, Kai Zosseder, Florian Einsiedl
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/9/1162
id doaj-73b8f28e831a42e6843a6029d8118a32
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Florian Heine
Kai Zosseder
Florian Einsiedl
spellingShingle Florian Heine
Kai Zosseder
Florian Einsiedl
Hydrochemical Zoning and Chemical Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using Water Chemical and Environmental Isotope Data
Water
water chemical data
environmental isotope analyses
multivariate statistical techniques
hydrochemical zoning
Upper Jurassic aquifer
South German Molasse Basin
author_facet Florian Heine
Kai Zosseder
Florian Einsiedl
author_sort Florian Heine
title Hydrochemical Zoning and Chemical Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using Water Chemical and Environmental Isotope Data
title_short Hydrochemical Zoning and Chemical Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using Water Chemical and Environmental Isotope Data
title_full Hydrochemical Zoning and Chemical Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using Water Chemical and Environmental Isotope Data
title_fullStr Hydrochemical Zoning and Chemical Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using Water Chemical and Environmental Isotope Data
title_full_unstemmed Hydrochemical Zoning and Chemical Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using Water Chemical and Environmental Isotope Data
title_sort hydrochemical zoning and chemical evolution of the deep upper jurassic thermal groundwater reservoir using water chemical and environmental isotope data
publisher MDPI AG
series Water
issn 2073-4441
publishDate 2021-04-01
description A comprehensive hydrogeological understanding of the deep Upper Jurassic carbonate aquifer, which represents an important geothermal reservoir in the South German Molasse Basin (SGMB), is crucial for improved and sustainable groundwater resource management. Water chemical data and environmental isotope analyses of D, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>18</mn></msup></semantics></math></inline-formula>O and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>87</mn></msup></semantics></math></inline-formula>Sr/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>86</mn></msup></semantics></math></inline-formula>Sr were obtained from groundwater of 24 deep Upper Jurassic geothermal wells and coupled with a few analyses of noble gases (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>3</mn></msup></semantics></math></inline-formula>He/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>4</mn></msup></semantics></math></inline-formula>He, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>40</mn></msup></semantics></math></inline-formula>Ar/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>36</mn></msup></semantics></math></inline-formula>Ar) and noble gas infiltration temperatures. Hierarchical cluster analysis revealed three major water types and allowed a hydrochemical zoning of the SGMB, while exploratory factor analyses identified the hydrogeological processes affecting the water chemical composition of the thermal water. Water types 1 and 2 are of Na-[Ca]-HCO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>-Cl type, lowly mineralised and have been recharged under meteoric cold climate conditions. Both water types show <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>87</mn></msup></semantics></math></inline-formula>Sr/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>86</mn></msup></semantics></math></inline-formula>Sr signatures, stable water isotopes values and calculated apparent mean residence times, which suggest minor water-rock interaction within a hydraulically active flow system of the Northeastern and Southeastern Central Molasse Basin. This thermal groundwater have been most likely subglacially recharged in the south of the SGMB in close proximity to the Bavarian Alps with a delineated northwards flow direction. Highly mineralised groundwater of water type 3 (Na-Cl-HCO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> and Na-Cl) occurs in the Eastern Central Molasse Basin. In contrast to water types 1 and 2, this water type shows substantial water-rock interaction with terrestrial sediments and increasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>40</mn></msup></semantics></math></inline-formula>Ar/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>36</mn></msup></semantics></math></inline-formula>Ar ratios, which may also imply a hydraulic exchange with fossil formation waters of overlying Tertiary sediments.
topic water chemical data
environmental isotope analyses
multivariate statistical techniques
hydrochemical zoning
Upper Jurassic aquifer
South German Molasse Basin
url https://www.mdpi.com/2073-4441/13/9/1162
work_keys_str_mv AT florianheine hydrochemicalzoningandchemicalevolutionofthedeepupperjurassicthermalgroundwaterreservoirusingwaterchemicalandenvironmentalisotopedata
AT kaizosseder hydrochemicalzoningandchemicalevolutionofthedeepupperjurassicthermalgroundwaterreservoirusingwaterchemicalandenvironmentalisotopedata
AT florianeinsiedl hydrochemicalzoningandchemicalevolutionofthedeepupperjurassicthermalgroundwaterreservoirusingwaterchemicalandenvironmentalisotopedata
_version_ 1721513776358883328
spelling doaj-73b8f28e831a42e6843a6029d8118a322021-04-22T23:05:05ZengMDPI AGWater2073-44412021-04-01131162116210.3390/w13091162Hydrochemical Zoning and Chemical Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using Water Chemical and Environmental Isotope DataFlorian Heine0Kai Zosseder1Florian Einsiedl2Department of Civil, Geo and Environmental Engineering, Technical University of Munich, Chair of Hydrogeology, Arcisstr. 21, 80333 Munich, GermanyDepartment of Civil, Geo and Environmental Engineering, Technical University of Munich, Chair of Hydrogeology, Arcisstr. 21, 80333 Munich, GermanyDepartment of Civil, Geo and Environmental Engineering, Technical University of Munich, Chair of Hydrogeology, Arcisstr. 21, 80333 Munich, GermanyA comprehensive hydrogeological understanding of the deep Upper Jurassic carbonate aquifer, which represents an important geothermal reservoir in the South German Molasse Basin (SGMB), is crucial for improved and sustainable groundwater resource management. Water chemical data and environmental isotope analyses of D, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>18</mn></msup></semantics></math></inline-formula>O and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>87</mn></msup></semantics></math></inline-formula>Sr/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>86</mn></msup></semantics></math></inline-formula>Sr were obtained from groundwater of 24 deep Upper Jurassic geothermal wells and coupled with a few analyses of noble gases (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>3</mn></msup></semantics></math></inline-formula>He/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>4</mn></msup></semantics></math></inline-formula>He, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>40</mn></msup></semantics></math></inline-formula>Ar/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>36</mn></msup></semantics></math></inline-formula>Ar) and noble gas infiltration temperatures. Hierarchical cluster analysis revealed three major water types and allowed a hydrochemical zoning of the SGMB, while exploratory factor analyses identified the hydrogeological processes affecting the water chemical composition of the thermal water. Water types 1 and 2 are of Na-[Ca]-HCO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula>-Cl type, lowly mineralised and have been recharged under meteoric cold climate conditions. Both water types show <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>87</mn></msup></semantics></math></inline-formula>Sr/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>86</mn></msup></semantics></math></inline-formula>Sr signatures, stable water isotopes values and calculated apparent mean residence times, which suggest minor water-rock interaction within a hydraulically active flow system of the Northeastern and Southeastern Central Molasse Basin. This thermal groundwater have been most likely subglacially recharged in the south of the SGMB in close proximity to the Bavarian Alps with a delineated northwards flow direction. Highly mineralised groundwater of water type 3 (Na-Cl-HCO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> and Na-Cl) occurs in the Eastern Central Molasse Basin. In contrast to water types 1 and 2, this water type shows substantial water-rock interaction with terrestrial sediments and increasing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>40</mn></msup></semantics></math></inline-formula>Ar/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>36</mn></msup></semantics></math></inline-formula>Ar ratios, which may also imply a hydraulic exchange with fossil formation waters of overlying Tertiary sediments.https://www.mdpi.com/2073-4441/13/9/1162water chemical dataenvironmental isotope analysesmultivariate statistical techniqueshydrochemical zoningUpper Jurassic aquiferSouth German Molasse Basin