Finite Element Analysis of Gas Diffusion in Polymer Nanocomposite Systems Containing Rod-like Nanofillers

Polymer-based films with improved gas barrier properties are of great interest for a large range of applications, including packaging and coatings. The barrier effect is generally obtained via the addition of a sufficient amount of impermeable nanofillers within the polymer matrix. Due to their low...

Full description

Bibliographic Details
Main Authors: Thouaiba Htira, Sarra Zid, Matthieu Zinet, Eliane Espuche
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/16/2615
Description
Summary:Polymer-based films with improved gas barrier properties are of great interest for a large range of applications, including packaging and coatings. The barrier effect is generally obtained via the addition of a sufficient amount of impermeable nanofillers within the polymer matrix. Due to their low environmental footprint, bio-based nanocomposites such as poly(lactic acid)–cellulose nanocrystal (PLA–CNC) nanocomposites seem to be an interesting alternative to synthetic-polymer-based nanocomposites. The morphology of such systems consists of the dispersion of impermeable rod-like fillers of finite length in a more permeable matrix. The aim of this work is to analyze, through finite element modeling (FEM), the diffusion behavior of 3D systems representative of PLA–CNC nanocomposites, allowing the determination of the nanocomposites’ effective diffusivity. Parametric studies are carried out to evaluate the effects of various parameters, such as the filler volume fraction, aspect ratio, polydispersity, and agglomeration, on the improvement of the barrier properties. The role of the filler–matrix interfacial area (or interphase) is also investigated and is shown to be particularly critical to the overall barrier effect for highly diffusive interphases.
ISSN:2073-4360