Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model

<b> </b>Under changing environments, the most widely used non-stationary flood frequency analysis (NFFA) method is the generalized additive models for location, scale and shape (GAMLSS) model. However, the model structure of the GAMLSS model is relatively complex due to the large number...

Full description

Bibliographic Details
Main Authors: Chunlai Qu, Jing Li, Lei Yan, Pengtao Yan, Fang Cheng, Dongyang Lu
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/7/1867
id doaj-73a1c1cb8c924c65abec867258c939bc
record_format Article
spelling doaj-73a1c1cb8c924c65abec867258c939bc2020-11-25T02:49:20ZengMDPI AGWater2073-44412020-06-01121867186710.3390/w12071867Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS ModelChunlai Qu0Jing Li1Lei Yan2Pengtao Yan3Fang Cheng4Dongyang Lu5College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, ChinaCollege of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, ChinaCollege of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, ChinaSchool of Physics and Electronic Engineering, Xingtai University, Xingtai 054001, ChinaCollege of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, ChinaCollege of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, China<b> </b>Under changing environments, the most widely used non-stationary flood frequency analysis (NFFA) method is the generalized additive models for location, scale and shape (GAMLSS) model. However, the model structure of the GAMLSS model is relatively complex due to the large number of statistical parameters, and the relationship between statistical parameters and covariates is assumed to be unchanged in future, which may be unreasonable. In recent years, nonparametric methods have received increasing attention in the field of NFFA. Among them, the linear quantile regression (QR-L) model and the non-linear quantile regression model of cubic B-spline (QR-CB) have been introduced into NFFA studies because they do not need to determine statistical parameters and consider the relationship between statistical parameters and covariates. However, these two quantile regression models have difficulties in estimating non-stationary design flood, since the trend of the established model must be extrapolated infinitely to estimate design flood. Besides, the number of available observations becomes scarcer when estimating design values corresponding to higher return periods, leading to unreasonable and inaccurate design values. In this study, we attempt to propose a cubic B-spline-based GAMLSS model (GAMLSS-CB) for NFFA. In the GAMLSS-CB model, the relationship between statistical parameters and covariates is fitted by the cubic B-spline under the GAMLSS model framework. We also compare the performance of different non-stationary models, namely the QR-L, QR-CB, and GAMLSS-CB models. Finally, based on the optimal non-stationary model, the non-stationary design flood values are estimated using the average design life level method (ADLL). The annual maximum flood series of four stations in the Weihe River basin and the Pearl River basin are taken as examples. The results show that the GAMLSS-CB model displays the best model performance compared with the QR-L and QR-CB models. Moreover, it is feasible to estimate design flood values based on the GAMLSS-CB model using the ADLL method, while the estimation of design flood based on the quantile regression model requires further studies.https://www.mdpi.com/2073-4441/12/7/1867non-stationarityB-splineGAMLSS-CBquantile regressionflood frequency analysisdesign flood
collection DOAJ
language English
format Article
sources DOAJ
author Chunlai Qu
Jing Li
Lei Yan
Pengtao Yan
Fang Cheng
Dongyang Lu
spellingShingle Chunlai Qu
Jing Li
Lei Yan
Pengtao Yan
Fang Cheng
Dongyang Lu
Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model
Water
non-stationarity
B-spline
GAMLSS-CB
quantile regression
flood frequency analysis
design flood
author_facet Chunlai Qu
Jing Li
Lei Yan
Pengtao Yan
Fang Cheng
Dongyang Lu
author_sort Chunlai Qu
title Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model
title_short Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model
title_full Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model
title_fullStr Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model
title_full_unstemmed Non-Stationary Flood Frequency Analysis Using Cubic B-Spline-Based GAMLSS Model
title_sort non-stationary flood frequency analysis using cubic b-spline-based gamlss model
publisher MDPI AG
series Water
issn 2073-4441
publishDate 2020-06-01
description <b> </b>Under changing environments, the most widely used non-stationary flood frequency analysis (NFFA) method is the generalized additive models for location, scale and shape (GAMLSS) model. However, the model structure of the GAMLSS model is relatively complex due to the large number of statistical parameters, and the relationship between statistical parameters and covariates is assumed to be unchanged in future, which may be unreasonable. In recent years, nonparametric methods have received increasing attention in the field of NFFA. Among them, the linear quantile regression (QR-L) model and the non-linear quantile regression model of cubic B-spline (QR-CB) have been introduced into NFFA studies because they do not need to determine statistical parameters and consider the relationship between statistical parameters and covariates. However, these two quantile regression models have difficulties in estimating non-stationary design flood, since the trend of the established model must be extrapolated infinitely to estimate design flood. Besides, the number of available observations becomes scarcer when estimating design values corresponding to higher return periods, leading to unreasonable and inaccurate design values. In this study, we attempt to propose a cubic B-spline-based GAMLSS model (GAMLSS-CB) for NFFA. In the GAMLSS-CB model, the relationship between statistical parameters and covariates is fitted by the cubic B-spline under the GAMLSS model framework. We also compare the performance of different non-stationary models, namely the QR-L, QR-CB, and GAMLSS-CB models. Finally, based on the optimal non-stationary model, the non-stationary design flood values are estimated using the average design life level method (ADLL). The annual maximum flood series of four stations in the Weihe River basin and the Pearl River basin are taken as examples. The results show that the GAMLSS-CB model displays the best model performance compared with the QR-L and QR-CB models. Moreover, it is feasible to estimate design flood values based on the GAMLSS-CB model using the ADLL method, while the estimation of design flood based on the quantile regression model requires further studies.
topic non-stationarity
B-spline
GAMLSS-CB
quantile regression
flood frequency analysis
design flood
url https://www.mdpi.com/2073-4441/12/7/1867
work_keys_str_mv AT chunlaiqu nonstationaryfloodfrequencyanalysisusingcubicbsplinebasedgamlssmodel
AT jingli nonstationaryfloodfrequencyanalysisusingcubicbsplinebasedgamlssmodel
AT leiyan nonstationaryfloodfrequencyanalysisusingcubicbsplinebasedgamlssmodel
AT pengtaoyan nonstationaryfloodfrequencyanalysisusingcubicbsplinebasedgamlssmodel
AT fangcheng nonstationaryfloodfrequencyanalysisusingcubicbsplinebasedgamlssmodel
AT dongyanglu nonstationaryfloodfrequencyanalysisusingcubicbsplinebasedgamlssmodel
_version_ 1724744104930181120