The growth of entire functions in the terms of generalized orders
Let $Phi$ be a convex function on $[x_0,+infty)$ such that$frac{Phi(x)}xo+infty$, $xo+infty$, $f(z)=sum_{n=0}^infty a_nz^n$--- a transcendental entire function, let $M(r,f)$ be the maximum modulus of$f$ and let$$ho_Phi(f)=varlimsup_{ro +infty}frac{lnln M(r,f)}{lnPhi(ln r)},quad c_{Phi}=varlimsup_{xo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2012-01-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Online Access: | http://journals.pu.if.ua/index.php/cmp/article/view/73/62 |
id |
doaj-73991c0fcef9427a980009fc3b72b343 |
---|---|
record_format |
Article |
spelling |
doaj-73991c0fcef9427a980009fc3b72b3432020-11-25T00:56:30ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272012-01-01412835The growth of entire functions in the terms of generalized ordersHlova T.Ya.Filevych P.V.Let $Phi$ be a convex function on $[x_0,+infty)$ such that$frac{Phi(x)}xo+infty$, $xo+infty$, $f(z)=sum_{n=0}^infty a_nz^n$--- a transcendental entire function, let $M(r,f)$ be the maximum modulus of$f$ and let$$ho_Phi(f)=varlimsup_{ro +infty}frac{lnln M(r,f)}{lnPhi(ln r)},quad c_{Phi}=varlimsup_{xo +infty}frac{ln x}{lnPhi(x)},quad d_{Phi}=varlimsuplimits_{xo +infty}frac{lnlnPhi'_+(x)}{lnPhi(x)}.$$It is proved that for every transcendental entire function $f$ thegeneralized order $ho_Phi(f)$ is independent on the arguments of thecoefficients $a_n$ (or defined by the sequence $(|a_n|)$) if and only if theinequality $d_{Phi}le c_{Phi}$ holds.http://journals.pu.if.ua/index.php/cmp/article/view/73/62 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hlova T.Ya. Filevych P.V. |
spellingShingle |
Hlova T.Ya. Filevych P.V. The growth of entire functions in the terms of generalized orders Karpatsʹkì Matematičnì Publìkacìï |
author_facet |
Hlova T.Ya. Filevych P.V. |
author_sort |
Hlova T.Ya. |
title |
The growth of entire functions in the terms of generalized orders |
title_short |
The growth of entire functions in the terms of generalized orders |
title_full |
The growth of entire functions in the terms of generalized orders |
title_fullStr |
The growth of entire functions in the terms of generalized orders |
title_full_unstemmed |
The growth of entire functions in the terms of generalized orders |
title_sort |
growth of entire functions in the terms of generalized orders |
publisher |
Vasyl Stefanyk Precarpathian National University |
series |
Karpatsʹkì Matematičnì Publìkacìï |
issn |
2075-9827 |
publishDate |
2012-01-01 |
description |
Let $Phi$ be a convex function on $[x_0,+infty)$ such that$frac{Phi(x)}xo+infty$, $xo+infty$, $f(z)=sum_{n=0}^infty a_nz^n$--- a transcendental entire function, let $M(r,f)$ be the maximum modulus of$f$ and let$$ho_Phi(f)=varlimsup_{ro +infty}frac{lnln M(r,f)}{lnPhi(ln r)},quad c_{Phi}=varlimsup_{xo +infty}frac{ln x}{lnPhi(x)},quad d_{Phi}=varlimsuplimits_{xo +infty}frac{lnlnPhi'_+(x)}{lnPhi(x)}.$$It is proved that for every transcendental entire function $f$ thegeneralized order $ho_Phi(f)$ is independent on the arguments of thecoefficients $a_n$ (or defined by the sequence $(|a_n|)$) if and only if theinequality $d_{Phi}le c_{Phi}$ holds. |
url |
http://journals.pu.if.ua/index.php/cmp/article/view/73/62 |
work_keys_str_mv |
AT hlovatya thegrowthofentirefunctionsinthetermsofgeneralizedorders AT filevychpv thegrowthofentirefunctionsinthetermsofgeneralizedorders AT hlovatya growthofentirefunctionsinthetermsofgeneralizedorders AT filevychpv growthofentirefunctionsinthetermsofgeneralizedorders |
_version_ |
1725226842938408960 |