The growth of entire functions in the terms of generalized orders

Let $Phi$ be a convex function on $[x_0,+infty)$ such that$frac{Phi(x)}xo+infty$, $xo+infty$, $f(z)=sum_{n=0}^infty a_nz^n$--- a transcendental entire function, let $M(r,f)$ be the maximum modulus of$f$ and let$$ho_Phi(f)=varlimsup_{ro +infty}frac{lnln M(r,f)}{lnPhi(ln r)},quad c_{Phi}=varlimsup_{xo...

Full description

Bibliographic Details
Main Authors: Hlova T.Ya., Filevych P.V.
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2012-01-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Online Access:http://journals.pu.if.ua/index.php/cmp/article/view/73/62
id doaj-73991c0fcef9427a980009fc3b72b343
record_format Article
spelling doaj-73991c0fcef9427a980009fc3b72b3432020-11-25T00:56:30ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272012-01-01412835The growth of entire functions in the terms of generalized ordersHlova T.Ya.Filevych P.V.Let $Phi$ be a convex function on $[x_0,+infty)$ such that$frac{Phi(x)}xo+infty$, $xo+infty$, $f(z)=sum_{n=0}^infty a_nz^n$--- a transcendental entire function, let $M(r,f)$ be the maximum modulus of$f$ and let$$ho_Phi(f)=varlimsup_{ro +infty}frac{lnln M(r,f)}{lnPhi(ln r)},quad c_{Phi}=varlimsup_{xo +infty}frac{ln x}{lnPhi(x)},quad d_{Phi}=varlimsuplimits_{xo +infty}frac{lnlnPhi'_+(x)}{lnPhi(x)}.$$It is proved that for every transcendental entire function $f$ thegeneralized order $ho_Phi(f)$ is independent on the arguments of thecoefficients $a_n$ (or defined by the sequence $(|a_n|)$) if and only if theinequality $d_{Phi}le c_{Phi}$ holds.http://journals.pu.if.ua/index.php/cmp/article/view/73/62
collection DOAJ
language English
format Article
sources DOAJ
author Hlova T.Ya.
Filevych P.V.
spellingShingle Hlova T.Ya.
Filevych P.V.
The growth of entire functions in the terms of generalized orders
Karpatsʹkì Matematičnì Publìkacìï
author_facet Hlova T.Ya.
Filevych P.V.
author_sort Hlova T.Ya.
title The growth of entire functions in the terms of generalized orders
title_short The growth of entire functions in the terms of generalized orders
title_full The growth of entire functions in the terms of generalized orders
title_fullStr The growth of entire functions in the terms of generalized orders
title_full_unstemmed The growth of entire functions in the terms of generalized orders
title_sort growth of entire functions in the terms of generalized orders
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
publishDate 2012-01-01
description Let $Phi$ be a convex function on $[x_0,+infty)$ such that$frac{Phi(x)}xo+infty$, $xo+infty$, $f(z)=sum_{n=0}^infty a_nz^n$--- a transcendental entire function, let $M(r,f)$ be the maximum modulus of$f$ and let$$ho_Phi(f)=varlimsup_{ro +infty}frac{lnln M(r,f)}{lnPhi(ln r)},quad c_{Phi}=varlimsup_{xo +infty}frac{ln x}{lnPhi(x)},quad d_{Phi}=varlimsuplimits_{xo +infty}frac{lnlnPhi'_+(x)}{lnPhi(x)}.$$It is proved that for every transcendental entire function $f$ thegeneralized order $ho_Phi(f)$ is independent on the arguments of thecoefficients $a_n$ (or defined by the sequence $(|a_n|)$) if and only if theinequality $d_{Phi}le c_{Phi}$ holds.
url http://journals.pu.if.ua/index.php/cmp/article/view/73/62
work_keys_str_mv AT hlovatya thegrowthofentirefunctionsinthetermsofgeneralizedorders
AT filevychpv thegrowthofentirefunctionsinthetermsofgeneralizedorders
AT hlovatya growthofentirefunctionsinthetermsofgeneralizedorders
AT filevychpv growthofentirefunctionsinthetermsofgeneralizedorders
_version_ 1725226842938408960