A Novel Stacking Heterogeneous Ensemble Model with Hybrid Wrapper-Based Feature Selection for Reservoir Productivity Predictions

Acid fracturing is the most important stimulation method in the carbonate reservoir. Due to the high cost and high risk of acid fracturing, it is necessary to predict the reservoir productivity before acid fracturing, which can provide support to optimize the parameters of acid fracturing. However,...

Full description

Bibliographic Details
Main Authors: Changlin Zhou, Lang Zhou, Fei Liu, Weihua Chen, Qian Wang, Keliang Liang, Wenqiu Guo, Liying Zhou
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/6675638
Description
Summary:Acid fracturing is the most important stimulation method in the carbonate reservoir. Due to the high cost and high risk of acid fracturing, it is necessary to predict the reservoir productivity before acid fracturing, which can provide support to optimize the parameters of acid fracturing. However, the productivity of a single well is affected by various construction parameters and geological conditions. Overfitting can occur when performing productivity prediction tasks on the high-dimension, small-sized reservoir, and acid fracturing dataset. Therefore, this study developed a stacking heterogeneous ensemble model with a hybrid wrapper-based feature selection strategy to forecast reservoir productivity, resolve the overfitting problem, and improve productivity prediction. Compared to other baseline models, the proposed model was found to have the best predictive performances on the test set and effectively deal with the overfitting. The results proved that the hybrid wrapper-based feature selection strategy introduced in this study reduced data acquisition costs and improved model comprehensibility without reducing model performance.
ISSN:1076-2787
1099-0526