Estimation of earth’s surface moves and deformation of the territory of mine “Khotin” of Kalush-Golinskyy field by method of radar interferometry
The article present processing techniques of radar data for calculating the deformations of the earth’s surface on the example of minefield, that is situated under the exogenous influence of underground workings of the “Khotin” minery Kalush-Golinskyy deposit. The estimation of accuracy of radar im...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2019-04-01
|
Series: | Geodesy and Cartography |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/GAC/article/view/6300 |
Summary: | The article present processing techniques of radar data for calculating the deformations of the earth’s surface on the example of minefield, that is situated under the exogenous influence of underground workings of the “Khotin” minery Kalush-Golinskyy deposit. The estimation of accuracy of radar image processing methods, namely, the interferometry of the permanent radar scatterers and the interferometry of a series of small baseline lines, is made, by comparison with the results of processional geometric levelling with a short beam of deformation soil rappers of the profile lines of the mine field. On the basis of geodetic instrumental field observations, shells of sediments of the earth’s surface were constructed and the boundaries of zero deposition caused by deformation processes in the area of hollow fields were established. Working out of an array of measurements by two methods of interferometry allowed to put on the digital map the data that reflect the average sedimentation rates in the year at the radar measurement locations. Due to the ranking of average annual sedimentation rates, areas of interest were outlined where significant precipitation was observed. This made it possible to assert that the earth’s crust was caused by the anthropogenic influence on the Khotin miner, which was observed since 1977 and continues existing, albeit at lower speeds. The use of expensive and labour-intensive processional levelling only on pre-determined problem areas is rational both from a scientific and from a production point of view, as it allows better use of material and human resources. Therefore, there is a need for an integrated monitoring system to prevent an exogenous catastrophe on an ongoing basis.
|
---|---|
ISSN: | 2029-6991 2029-7009 |