Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions
In this paper, we study some $(p,q)$-Hardy type inequalities for $(p,q)$-integrable functions. Moreover, we also study $(p,q)$-Hölder integral inequality and $(p,q)$-Minkowski integral inequality for two variables. By taking $p=1$ and $q\to 1$, our results reduce to classical results on Hardy type i...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-10-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/math.2021006/fulltext.html |
id |
doaj-735f97d1ff304649a3c59762465457d0 |
---|---|
record_format |
Article |
spelling |
doaj-735f97d1ff304649a3c59762465457d02020-11-25T03:34:50ZengAIMS PressAIMS Mathematics2473-69882021-10-0161778910.3934/math.2021006Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functionsSuriyakamol Thongjob0Kamsing Nonlaopon1Sortiris K. Ntouyas21 Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand1 Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand2 Department of Mathematics, University of Ioannina, Ioannina 45110, Greece 3 Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi ArabiaIn this paper, we study some $(p,q)$-Hardy type inequalities for $(p,q)$-integrable functions. Moreover, we also study $(p,q)$-Hölder integral inequality and $(p,q)$-Minkowski integral inequality for two variables. By taking $p=1$ and $q\to 1$, our results reduce to classical results on Hardy type inequalities, Hölder integral inequality and Minkowski integral inequality for two variables.https://www.aimspress.com/article/10.3934/math.2021006/fulltext.htmlhardy type inequalitiesminkowski integral inequality(<i>pq</i>)-calculusq</i>)-integrable function |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Suriyakamol Thongjob Kamsing Nonlaopon Sortiris K. Ntouyas |
spellingShingle |
Suriyakamol Thongjob Kamsing Nonlaopon Sortiris K. Ntouyas Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions AIMS Mathematics hardy type inequalities minkowski integral inequality (<i>p q</i>)-calculus q</i>)-integrable function |
author_facet |
Suriyakamol Thongjob Kamsing Nonlaopon Sortiris K. Ntouyas |
author_sort |
Suriyakamol Thongjob |
title |
Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions |
title_short |
Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions |
title_full |
Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions |
title_fullStr |
Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions |
title_full_unstemmed |
Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions |
title_sort |
some (<em>p, q</em>)-hardy type inequalities for (<em>p, q</em>)-integrable functions |
publisher |
AIMS Press |
series |
AIMS Mathematics |
issn |
2473-6988 |
publishDate |
2021-10-01 |
description |
In this paper, we study some $(p,q)$-Hardy type inequalities for $(p,q)$-integrable functions. Moreover, we also study $(p,q)$-Hölder integral inequality and $(p,q)$-Minkowski integral inequality for two variables. By taking $p=1$ and $q\to 1$, our results reduce to classical results on Hardy type inequalities, Hölder integral inequality and Minkowski integral inequality for two variables. |
topic |
hardy type inequalities minkowski integral inequality (<i>p q</i>)-calculus q</i>)-integrable function |
url |
https://www.aimspress.com/article/10.3934/math.2021006/fulltext.html |
work_keys_str_mv |
AT suriyakamolthongjob someempqemhardytypeinequalitiesforempqemintegrablefunctions AT kamsingnonlaopon someempqemhardytypeinequalitiesforempqemintegrablefunctions AT sortiriskntouyas someempqemhardytypeinequalitiesforempqemintegrablefunctions |
_version_ |
1724557284490608640 |