Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions

In this paper, we study some $(p,q)$-Hardy type inequalities for $(p,q)$-integrable functions. Moreover, we also study $(p,q)$-Hölder integral inequality and $(p,q)$-Minkowski integral inequality for two variables. By taking $p=1$ and $q\to 1$, our results reduce to classical results on Hardy type i...

Full description

Bibliographic Details
Main Authors: Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas
Format: Article
Language:English
Published: AIMS Press 2021-10-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2021006/fulltext.html
id doaj-735f97d1ff304649a3c59762465457d0
record_format Article
spelling doaj-735f97d1ff304649a3c59762465457d02020-11-25T03:34:50ZengAIMS PressAIMS Mathematics2473-69882021-10-0161778910.3934/math.2021006Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functionsSuriyakamol Thongjob0Kamsing Nonlaopon1Sortiris K. Ntouyas21 Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand1 Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand2 Department of Mathematics, University of Ioannina, Ioannina 45110, Greece 3 Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi ArabiaIn this paper, we study some $(p,q)$-Hardy type inequalities for $(p,q)$-integrable functions. Moreover, we also study $(p,q)$-Hölder integral inequality and $(p,q)$-Minkowski integral inequality for two variables. By taking $p=1$ and $q\to 1$, our results reduce to classical results on Hardy type inequalities, Hölder integral inequality and Minkowski integral inequality for two variables.https://www.aimspress.com/article/10.3934/math.2021006/fulltext.htmlhardy type inequalitiesminkowski integral inequality(<i>pq</i>)-calculusq</i>)-integrable function
collection DOAJ
language English
format Article
sources DOAJ
author Suriyakamol Thongjob
Kamsing Nonlaopon
Sortiris K. Ntouyas
spellingShingle Suriyakamol Thongjob
Kamsing Nonlaopon
Sortiris K. Ntouyas
Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions
AIMS Mathematics
hardy type inequalities
minkowski integral inequality
(<i>p
q</i>)-calculus
q</i>)-integrable function
author_facet Suriyakamol Thongjob
Kamsing Nonlaopon
Sortiris K. Ntouyas
author_sort Suriyakamol Thongjob
title Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions
title_short Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions
title_full Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions
title_fullStr Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions
title_full_unstemmed Some (<em>p, q</em>)-Hardy type inequalities for (<em>p, q</em>)-integrable functions
title_sort some (<em>p, q</em>)-hardy type inequalities for (<em>p, q</em>)-integrable functions
publisher AIMS Press
series AIMS Mathematics
issn 2473-6988
publishDate 2021-10-01
description In this paper, we study some $(p,q)$-Hardy type inequalities for $(p,q)$-integrable functions. Moreover, we also study $(p,q)$-Hölder integral inequality and $(p,q)$-Minkowski integral inequality for two variables. By taking $p=1$ and $q\to 1$, our results reduce to classical results on Hardy type inequalities, Hölder integral inequality and Minkowski integral inequality for two variables.
topic hardy type inequalities
minkowski integral inequality
(<i>p
q</i>)-calculus
q</i>)-integrable function
url https://www.aimspress.com/article/10.3934/math.2021006/fulltext.html
work_keys_str_mv AT suriyakamolthongjob someempqemhardytypeinequalitiesforempqemintegrablefunctions
AT kamsingnonlaopon someempqemhardytypeinequalitiesforempqemintegrablefunctions
AT sortiriskntouyas someempqemhardytypeinequalitiesforempqemintegrablefunctions
_version_ 1724557284490608640