Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight
We consider a nonlinearizable eigenvalue problem for the beam equation with an indefinite weight function. We investigate the structure of bifurcation set and study the behavior of connected components of the solution set bifurcating from the line of trivial solutions and contained in the classes of...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2017-12-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5997 |
id |
doaj-734f14341b064a6c97b9fc24fd970938 |
---|---|
record_format |
Article |
spelling |
doaj-734f14341b064a6c97b9fc24fd9709382021-07-14T07:21:30ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752017-12-0120179211210.14232/ejqtde.2017.1.925997Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weightZiyatkhan Aliyev0Rada Huseynova1Department of Mathematical Analysis, Baku State University, Baku, AzerbaijanInstitute of Mathematics and Mechanics NAS of Azerbaijan, Baku, AzerbaijanWe consider a nonlinearizable eigenvalue problem for the beam equation with an indefinite weight function. We investigate the structure of bifurcation set and study the behavior of connected components of the solution set bifurcating from the line of trivial solutions and contained in the classes of positive and negative functions.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5997nonlinear eigenvalue problembifurcation pointprincipal eigenvaluesglobal continuaindefinite weight |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ziyatkhan Aliyev Rada Huseynova |
spellingShingle |
Ziyatkhan Aliyev Rada Huseynova Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight Electronic Journal of Qualitative Theory of Differential Equations nonlinear eigenvalue problem bifurcation point principal eigenvalues global continua indefinite weight |
author_facet |
Ziyatkhan Aliyev Rada Huseynova |
author_sort |
Ziyatkhan Aliyev |
title |
Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight |
title_short |
Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight |
title_full |
Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight |
title_fullStr |
Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight |
title_full_unstemmed |
Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight |
title_sort |
bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2017-12-01 |
description |
We consider a nonlinearizable eigenvalue problem for the beam equation with an indefinite weight function. We investigate the structure of bifurcation set and study the behavior of connected components of the solution set bifurcating from the line of trivial solutions and contained in the classes of positive and negative functions. |
topic |
nonlinear eigenvalue problem bifurcation point principal eigenvalues global continua indefinite weight |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5997 |
work_keys_str_mv |
AT ziyatkhanaliyev bifurcationinnonlinearizableeigenvalueproblemsforordinarydifferentialequationsoffourthorderwithindefiniteweight AT radahuseynova bifurcationinnonlinearizableeigenvalueproblemsforordinarydifferentialequationsoffourthorderwithindefiniteweight |
_version_ |
1721303478486171648 |