Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight

We consider a nonlinearizable eigenvalue problem for the beam equation with an indefinite weight function. We investigate the structure of bifurcation set and study the behavior of connected components of the solution set bifurcating from the line of trivial solutions and contained in the classes of...

Full description

Bibliographic Details
Main Authors: Ziyatkhan Aliyev, Rada Huseynova
Format: Article
Language:English
Published: University of Szeged 2017-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5997
id doaj-734f14341b064a6c97b9fc24fd970938
record_format Article
spelling doaj-734f14341b064a6c97b9fc24fd9709382021-07-14T07:21:30ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752017-12-0120179211210.14232/ejqtde.2017.1.925997Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weightZiyatkhan Aliyev0Rada Huseynova1Department of Mathematical Analysis, Baku State University, Baku, AzerbaijanInstitute of Mathematics and Mechanics NAS of Azerbaijan, Baku, AzerbaijanWe consider a nonlinearizable eigenvalue problem for the beam equation with an indefinite weight function. We investigate the structure of bifurcation set and study the behavior of connected components of the solution set bifurcating from the line of trivial solutions and contained in the classes of positive and negative functions.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5997nonlinear eigenvalue problembifurcation pointprincipal eigenvaluesglobal continuaindefinite weight
collection DOAJ
language English
format Article
sources DOAJ
author Ziyatkhan Aliyev
Rada Huseynova
spellingShingle Ziyatkhan Aliyev
Rada Huseynova
Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight
Electronic Journal of Qualitative Theory of Differential Equations
nonlinear eigenvalue problem
bifurcation point
principal eigenvalues
global continua
indefinite weight
author_facet Ziyatkhan Aliyev
Rada Huseynova
author_sort Ziyatkhan Aliyev
title Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight
title_short Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight
title_full Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight
title_fullStr Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight
title_full_unstemmed Bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight
title_sort bifurcation in nonlinearizable eigenvalue problems for ordinary differential equations of fourth order with indefinite weight
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2017-12-01
description We consider a nonlinearizable eigenvalue problem for the beam equation with an indefinite weight function. We investigate the structure of bifurcation set and study the behavior of connected components of the solution set bifurcating from the line of trivial solutions and contained in the classes of positive and negative functions.
topic nonlinear eigenvalue problem
bifurcation point
principal eigenvalues
global continua
indefinite weight
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5997
work_keys_str_mv AT ziyatkhanaliyev bifurcationinnonlinearizableeigenvalueproblemsforordinarydifferentialequationsoffourthorderwithindefiniteweight
AT radahuseynova bifurcationinnonlinearizableeigenvalueproblemsforordinarydifferentialequationsoffourthorderwithindefiniteweight
_version_ 1721303478486171648