Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.

The purpose of the present study was to investigate whether corticospinal projections from human supplementary motor area (SMA) are functional during precise force control with the precision grip (thumb-index opposition). Since beta band corticomuscular coherence (CMC) is well-accepted to reflect ef...

Full description

Bibliographic Details
Main Authors: Sophie Chen, Jonathan Entakli, Mireille Bonnard, Eric Berton, Jozina B De Graaf
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3605387?pdf=render
id doaj-732b4fd70ae741e0a905fdf51a985acb
record_format Article
spelling doaj-732b4fd70ae741e0a905fdf51a985acb2020-11-25T01:25:36ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0183e6029110.1371/journal.pone.0060291Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.Sophie ChenJonathan EntakliMireille BonnardEric BertonJozina B De GraafThe purpose of the present study was to investigate whether corticospinal projections from human supplementary motor area (SMA) are functional during precise force control with the precision grip (thumb-index opposition). Since beta band corticomuscular coherence (CMC) is well-accepted to reflect efferent corticospinal transmission, we analyzed the beta band CMC obtained with simultaneous recording of electroencephalographic (EEG) and electromyographic (EMG) signals. Subjects performed a bimanual precise visuomotor force tracking task by applying isometric low grip forces with their right hand precision grip on a custom device with strain gauges. Concurrently, they held the device with their left hand precision grip, producing similar grip forces but without any precision constraints, to relieve the right hand. Some subjects also participated in a unimanual control condition in which they performed the task with only the right hand precision grip while the device was held by a mechanical grip. We analyzed whole scalp topographies of beta band CMC between 64 EEG channels and 4 EMG intrinsic hand muscles, 2 for each hand. To compare the different topographies, we performed non-parametric statistical tests based on spatio-spectral clustering. For the right hand, we obtained significant beta band CMC over the contralateral M1 region as well as over the SMA region during static force contraction periods. For the left hand, however, beta band CMC was only found over the contralateral M1. By comparing unimanual and bimanual conditions for right hand muscles, no significant difference was found on beta band CMC over M1 and SMA. We conclude that the beta band CMC found over SMA for right hand muscles results from the precision constraints and not from the bimanual aspect of the task. The result of the present study strongly suggests that the corticospinal projections from human SMA become functional when high precision force control is required.http://europepmc.org/articles/PMC3605387?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Sophie Chen
Jonathan Entakli
Mireille Bonnard
Eric Berton
Jozina B De Graaf
spellingShingle Sophie Chen
Jonathan Entakli
Mireille Bonnard
Eric Berton
Jozina B De Graaf
Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.
PLoS ONE
author_facet Sophie Chen
Jonathan Entakli
Mireille Bonnard
Eric Berton
Jozina B De Graaf
author_sort Sophie Chen
title Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.
title_short Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.
title_full Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.
title_fullStr Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.
title_full_unstemmed Functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.
title_sort functional corticospinal projections from human supplementary motor area revealed by corticomuscular coherence during precise grip force control.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2013-01-01
description The purpose of the present study was to investigate whether corticospinal projections from human supplementary motor area (SMA) are functional during precise force control with the precision grip (thumb-index opposition). Since beta band corticomuscular coherence (CMC) is well-accepted to reflect efferent corticospinal transmission, we analyzed the beta band CMC obtained with simultaneous recording of electroencephalographic (EEG) and electromyographic (EMG) signals. Subjects performed a bimanual precise visuomotor force tracking task by applying isometric low grip forces with their right hand precision grip on a custom device with strain gauges. Concurrently, they held the device with their left hand precision grip, producing similar grip forces but without any precision constraints, to relieve the right hand. Some subjects also participated in a unimanual control condition in which they performed the task with only the right hand precision grip while the device was held by a mechanical grip. We analyzed whole scalp topographies of beta band CMC between 64 EEG channels and 4 EMG intrinsic hand muscles, 2 for each hand. To compare the different topographies, we performed non-parametric statistical tests based on spatio-spectral clustering. For the right hand, we obtained significant beta band CMC over the contralateral M1 region as well as over the SMA region during static force contraction periods. For the left hand, however, beta band CMC was only found over the contralateral M1. By comparing unimanual and bimanual conditions for right hand muscles, no significant difference was found on beta band CMC over M1 and SMA. We conclude that the beta band CMC found over SMA for right hand muscles results from the precision constraints and not from the bimanual aspect of the task. The result of the present study strongly suggests that the corticospinal projections from human SMA become functional when high precision force control is required.
url http://europepmc.org/articles/PMC3605387?pdf=render
work_keys_str_mv AT sophiechen functionalcorticospinalprojectionsfromhumansupplementarymotorarearevealedbycorticomuscularcoherenceduringprecisegripforcecontrol
AT jonathanentakli functionalcorticospinalprojectionsfromhumansupplementarymotorarearevealedbycorticomuscularcoherenceduringprecisegripforcecontrol
AT mireillebonnard functionalcorticospinalprojectionsfromhumansupplementarymotorarearevealedbycorticomuscularcoherenceduringprecisegripforcecontrol
AT ericberton functionalcorticospinalprojectionsfromhumansupplementarymotorarearevealedbycorticomuscularcoherenceduringprecisegripforcecontrol
AT jozinabdegraaf functionalcorticospinalprojectionsfromhumansupplementarymotorarearevealedbycorticomuscularcoherenceduringprecisegripforcecontrol
_version_ 1725113040029876224