Inclusion of Hydraulic Controls in Rehabilitation Models of Drainage Networks to Control Floods

A problem for drainage systems managers is the increase in extreme rain events that are increasing in various parts of the world. Their occurrence produces hydraulic overload in the drainage system and consequently floods. Adapting the existing infrastructure to be able to receive extreme rains with...

Full description

Bibliographic Details
Main Authors: Leonardo Bayas-Jiménez, F. Javier Martínez-Solano, Pedro L. Iglesias-Rey, Daniel Mora-Melia, Vicente S. Fuertes-Miquel
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/4/514
Description
Summary:A problem for drainage systems managers is the increase in extreme rain events that are increasing in various parts of the world. Their occurrence produces hydraulic overload in the drainage system and consequently floods. Adapting the existing infrastructure to be able to receive extreme rains without generating consequences for cities’ inhabitants has become a necessity. This research shows a new way to improve drainage systems with minimal investment costs, using for this purpose a novel methodology that considers the inclusion of hydraulic control elements in the network, the installation of storm tanks and the replacement of pipes. The presented methodology uses the Storm Water Management Model for the hydraulic analysis of the network and a modified Genetic Algorithm to optimize the network. In this algorithm, called the Pseudo-Genetic Algorithm, the coding of the chromosomes is integral and has been used in previous studies of hydraulic optimization. This work evaluates the cost of the required infrastructure and the damage caused by floods to find the optimal solution. The main conclusion of this study is that the inclusion of hydraulic controls can reduce the cost of network rehabilitation and decrease flood levels.
ISSN:2073-4441