Efficient Hierarchical Identity-Based Encryption System for Internet of Things Infrastructure

Security is a main concern for the Internet of Things (IoT) infrastructure as large volumes of data are collected and processed in the systems. Due to the limited resources of interconnected sensors and devices in the IoT systems, efficiency is one of the key considerations when deploying security s...

Full description

Bibliographic Details
Main Authors: Lifeng Guo, Jing Wang, Wei-Chuen Yau
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/7/913
Description
Summary:Security is a main concern for the Internet of Things (IoT) infrastructure as large volumes of data are collected and processed in the systems. Due to the limited resources of interconnected sensors and devices in the IoT systems, efficiency is one of the key considerations when deploying security solutions (e.g., symmetric/asymmetric encryption, authentication, etc.) in IoT. In this paper, we present an efficient Hierarchical Identity-Based Encryption (HIBE) system with short parameters for protecting data confidentiality in distributed IoT infrastructure. Our proposed HIBE system has the public parameters, private key, and ciphertext, each consisting of a constant number of group elements. We prove the full security of the HIBE system in the standard model using the dual system encryption technique. We also implement the proposed scheme and compare the performance with the original Lewko−Waters HIBE. To the best of our knowledge, our construction is the first HIBE system that achieves both full security in the standard model and short parameters in terms of the public parameters, private key, and ciphertext.
ISSN:2073-8994