Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep
Cartilage defects are a source of pain, immobility, and reduced quality of life for patients who have acquired these defects through injury, wear, or disease. The avascular nature of cartilage tissue adds to the complexity of cartilage tissue repair or regeneration efforts. The known limitations of...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2017-04-01
|
Series: | Journal of Tissue Engineering |
Online Access: | https://doi.org/10.1177/2041731417697500 |
id |
doaj-731681b59ce24fddbaa55628f3227a96 |
---|---|
record_format |
Article |
spelling |
doaj-731681b59ce24fddbaa55628f3227a962020-11-25T03:55:52ZengSAGE PublishingJournal of Tissue Engineering2041-73142017-04-01810.1177/204173141769750010.1177_2041731417697500Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheepAltug Yucekul0Deniz Ozdil1Nuri Hunkar Kutlu2Esra Erdemli3Halil Murat Aydin4Mahmut Nedim Doral5Department of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, Ankara, TurkeyBioengineering Division, Institute of Science and Engineering, Hacettepe University, Ankara, TurkeyBMT Calsis Health Technologies Co., Ankara, TurkeyDepartment of Histology and Embryology, School of Medicine, Ankara University, Ankara, TurkeyEnvironmental Engineering Department & Bioengineering Division and Centre for Bioengineering, Hacettepe University, Ankara, TurkeyDepartment of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, Ankara, TurkeyCartilage defects are a source of pain, immobility, and reduced quality of life for patients who have acquired these defects through injury, wear, or disease. The avascular nature of cartilage tissue adds to the complexity of cartilage tissue repair or regeneration efforts. The known limitations of using autografts, allografts, or xenografts further add to this complexity. Autologous chondrocyte implantation or matrix-assisted chondrocyte implantation techniques attempt to introduce cultured cartilage cells to defect areas in the patient, but clinical success with these are impeded by the avascularity of cartilage tissue. Biodegradable, synthetic scaffolds capable of supporting local cells and overcoming the issue of poor vascularization would bypass the issues of current cartilage treatment options. In this study, we propose a biodegradable, tri-layered (poly(glycolic acid) mesh/poly( l -lactic acid)-colorant tidemark layer/collagen Type I and ceramic microparticle-coated poly( l -lactic acid)-poly(ϵ-caprolactone) monolith) osteochondral plug indicated for the repair of cartilage defects. The porous plug allows the continual transport of bone marrow constituents from the subchondral layer to the cartilage defect site for a more effective repair of the area. Assessment of the in vivo performance of the implant was conducted in an ovine model (n = 13). In addition to a control group (no implant), one group received the implant alone (Group A), while another group was supplemented with hyaluronic acid (0.8 mL at 10 mg/mL solution; Group B). Analyses performed on specimens from the in vivo study revealed that the implant achieves cartilage formation within 6 months. No adverse tissue reactions or other complications were reported. Our findings indicate that the porous biocompatible implant seems to be a promising treatment option for the cartilage repair.https://doi.org/10.1177/2041731417697500 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Altug Yucekul Deniz Ozdil Nuri Hunkar Kutlu Esra Erdemli Halil Murat Aydin Mahmut Nedim Doral |
spellingShingle |
Altug Yucekul Deniz Ozdil Nuri Hunkar Kutlu Esra Erdemli Halil Murat Aydin Mahmut Nedim Doral Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep Journal of Tissue Engineering |
author_facet |
Altug Yucekul Deniz Ozdil Nuri Hunkar Kutlu Esra Erdemli Halil Murat Aydin Mahmut Nedim Doral |
author_sort |
Altug Yucekul |
title |
Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep |
title_short |
Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep |
title_full |
Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep |
title_fullStr |
Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep |
title_full_unstemmed |
Tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep |
title_sort |
tri-layered composite plug for the repair of osteochondral defects: in vivo study in sheep |
publisher |
SAGE Publishing |
series |
Journal of Tissue Engineering |
issn |
2041-7314 |
publishDate |
2017-04-01 |
description |
Cartilage defects are a source of pain, immobility, and reduced quality of life for patients who have acquired these defects through injury, wear, or disease. The avascular nature of cartilage tissue adds to the complexity of cartilage tissue repair or regeneration efforts. The known limitations of using autografts, allografts, or xenografts further add to this complexity. Autologous chondrocyte implantation or matrix-assisted chondrocyte implantation techniques attempt to introduce cultured cartilage cells to defect areas in the patient, but clinical success with these are impeded by the avascularity of cartilage tissue. Biodegradable, synthetic scaffolds capable of supporting local cells and overcoming the issue of poor vascularization would bypass the issues of current cartilage treatment options. In this study, we propose a biodegradable, tri-layered (poly(glycolic acid) mesh/poly( l -lactic acid)-colorant tidemark layer/collagen Type I and ceramic microparticle-coated poly( l -lactic acid)-poly(ϵ-caprolactone) monolith) osteochondral plug indicated for the repair of cartilage defects. The porous plug allows the continual transport of bone marrow constituents from the subchondral layer to the cartilage defect site for a more effective repair of the area. Assessment of the in vivo performance of the implant was conducted in an ovine model (n = 13). In addition to a control group (no implant), one group received the implant alone (Group A), while another group was supplemented with hyaluronic acid (0.8 mL at 10 mg/mL solution; Group B). Analyses performed on specimens from the in vivo study revealed that the implant achieves cartilage formation within 6 months. No adverse tissue reactions or other complications were reported. Our findings indicate that the porous biocompatible implant seems to be a promising treatment option for the cartilage repair. |
url |
https://doi.org/10.1177/2041731417697500 |
work_keys_str_mv |
AT altugyucekul trilayeredcompositeplugfortherepairofosteochondraldefectsinvivostudyinsheep AT denizozdil trilayeredcompositeplugfortherepairofosteochondraldefectsinvivostudyinsheep AT nurihunkarkutlu trilayeredcompositeplugfortherepairofosteochondraldefectsinvivostudyinsheep AT esraerdemli trilayeredcompositeplugfortherepairofosteochondraldefectsinvivostudyinsheep AT halilmurataydin trilayeredcompositeplugfortherepairofosteochondraldefectsinvivostudyinsheep AT mahmutnedimdoral trilayeredcompositeplugfortherepairofosteochondraldefectsinvivostudyinsheep |
_version_ |
1724467733041512448 |